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Abstract—This paper proposes a combined strategy of clustering and Support
Vector Regression (SVR) methods to predict Cyclosporine A (CyA) concentration
in renal transplant recipients. Clustering combats the high variability and non-
stationarity of the time series and reports knowledge gain in the problem. The SVR
outperforms other classical neural networks.

Introduction Despite progress with newer agents, Cyclosporine
A (CyA) is still the cornerstone of immunosuppression in patients
who have undergone kidney transplantation. However, CyA is gen-
erally considered to be a critical dose drug. Underdosing may result
in graft loss and overdosing causes kidney damage, increases oppor-
tunistic infections, systolic and diastolic pressure, and cholesterol.
Moreover, the pharmacokinetic behavior of CyA presents a substan-
tial inter- and intra-individual variability which appears to be partic-
ularly evident in the earlier post-transplantation period (<3 months),
when the risk and clinical consequences of acute rejection are higher
than in stable renal patients (>6 months) [1]. Several factors such
as clinical drug interactions and patient compliance can also signifi-
cantly alter blood CyA concentrations and thus intensive therapeutic
drug monitoring of CyA becomes necessary but it influences the pa-
tient’s quality of life and the cost of the care.

Models capable of predicting the future concentration and deter-
mining the optimal dosage of CyA usually aid to individualize ther-
apy. Few studies have been done and none, to our knowledge, using
machine learning or neural networks. We propose the use of Sup-
port Vector Machines (SVM) for solving this task since they do not
rely on anya priori assumption about the problem and have proven
to be effective techniques in a wide range of applications [2]. To
deal with the non-uniform sampling (NUS), the presence of non-
stationary processes, and the high variability in the time series, we
have previously clustered the data.

Support Vector RegressorSVMs are state-of-the-art tools for non-
linear input-output knowledge discovery [2]. The Support Vector Re-
gressor (SVR) is for regression and function approximation. Given
a labelled training data set ({(xi,yi), i = 1, . . . ,n},xi ∈ R and
yi ∈ R) and a nonlinear mapping to a higher dimensional spaceφ(·)
(x ∈ R −→ φ(x) ∈ RH, d ≤ H), the SVR solves:
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wherew andb define a linear regressor in the feature space, nonlin-
ear in the input space unlessφ(xi) = xi. In addition,ξi, ξ∗i andC
are, respectively, positive slack variables to deal with training sam-
ples with a prediction error larger thanε and the penalization applied
to these ones. The tube sizeε is traded off against model complexity
and slack variables via a constantν ∈ [0, 1) which can be regarded
as an upper bound on the fraction of errors and a lower bound on the
fraction of Support Vectors (SV). This formulation is known as the
ν-SVR [3]. The usual procedure for solving SVRs introduces the lin-
ear restrictions using Lagrange multipliers into Eq. (1), computes the
Karush-Kuhn-Tucker conditions and solves the Wolfe’s dual prob-
lem using quadratic programing procedures [2], [3]. We will instead
use an alternative procedure that consists in solving iteratively a se-
ries of weighted least square problems [4], known as Iterative Re-
Weighted Least Square (IRWLS) procedure, that is summarised in
the next steps:
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where we have defined:

(H)ij = φT (xi)φ(xj) = κ(xi,xj) (6)
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and, in order to work with reproducing kernels in Hilbert Space, we
requirew to be a linear a combination of subset of training samples
w =

∑n
i=1 βiφ(xi).
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whereei = yi−φT (xi)w−b−ε ande∗i = φT (xi)w+b−yi−ε
3. Repeat until convergence.
The column vectorsy, a, a∗, β and1, present the obvious expres-
sions andH is known as thekernelmatrix, since it is only formed by
inner products of the training samples in the feature space. Conse-
quently, neither the minimizing procedure nor the use of the regressor
needs to know explicitly the form of the nonlinear mapping,φ(·), but
only its kernel representationκ(·, ·). The needed transformations to
obtain the IRWLS procedure from the minimization of Eq. (1) are
detailed in [4].

Data collection Fifty-seven renal allograft recipients treated in
the Nephrology Service of the Hospital Universitari Dr. Peset in
the city of Val̀encia (Spain) were included in this study. Patients
received a standard immunosuppressive regimen of CyA (Sandim-
mun Neoralr). Steady state blood samples were withdrawn 12-14
hours after dose administration and measured by a specific mono-
clonal fluorescence polarization immunoassay. We collected 11 pa-
tient factors such as age, gender, creatinine plasma levels, creatinine
clearance, alkaline phosphatase, hematocrit, urea and bilirubin, along
with dosage, CyA blood concentration and post-transplantation days
to build the models. Eachpatternwas formed by the present and past
values of the these variables in order to perform one-step-ahead pre-
diction. We split the data into two groups: two-thirds of the patients
were used to train the models and the rest for their validation using
the cross-validation method.

Results The high intersubjects variability (coefficient of varia-
tion, CV = 31%) led us to set up clusters and then building indi-
vidual predictive models for each one of them. We have used the
well-knownK-means clustering algorithm and selected the optimal
partition by evaluating the root-mean-square error (RMSE) of dedi-
cated models through 3-fold cross-validation experiments. Four clus-
ters were identified with this methodology. Since the second cluster
was the largest (42% of the patterns), models yielded poor results
in it (RMSE>60 ng/mL) and its variability still held high values
(CV=27%), we decided to perform re-clustering on it. Once again
a four-clusters partition was employed for the posterior prediction.
The clustering reduced the RMSE and revealed postoperatory days,
creatinine clearance, CyA blood concentration and serum alkaline
phosphatase as decisive factors.

In Table I results are benchmarked with a multilayer perceptron
(MLP) trained with the familiar back-propagation algorithm and the
Elman recurrent neural network [5] both with and without a previous
clustering.

Elman network fails with a clustering approach since NUS be-
comes more evident since samples from the same patient can be in
different clusters and, thus, contextual neurons do not deal efficiently
with past time samples. Theν-SVR model outperforms the MLP
since the CV[%] is subsequently reduced in each partition. Blood
levels accurately predicted (%BLAP) if an error margin of 20% is
fixed have reached a value of 70%, which is an excellent result con-
sidering the time series characteristics of our population. Fig.IV
shows predictions in two validation patients.

There is, nevertheless, 14% of patients with poor predictions which
can be due to errors in drug dosage administration, in recording blood
sampling times or abrupt changes in each patient’s clinical condi-
tion. An additional hypothesis for this could be some kind of liver
dysfunction since alkaline phosphatase has resulted in a critical clus-
tering factor. If we discard these patients, %BLAP increases to a



TABLE I . Mean error (ME [ng/mL]) and root-mean-square error (RMSE [ng/mL]) of

models both for training and validation.

Model ME(T) ME(V) RMSE(T) RMSE(V)
(± CI95%) (± CI95%) (± CI95%) (± CI95%)

MLP 0.13 3.17 52.71 52.64
(-3.88,4.14) (-1.81,8.16) (48.27,56.82) (45.27,59.11)

MLP with 0.18 3.23 51.79 51.60
clustering (-3.82,4.18) (-1.37,7.83) (47.98,55.60) (46.90,56.30)

Elman -5.85 0.30 53.69 52.72
21×2×1 (-9.91,-1.79) (-4.71,5.31) (49.32,57.73) (46.03,58.66)
Elman with -6.12 0.40 56.31 55.21
clustering (-10.21,-1.99) (-4.75,5.55) (52.01,60.61) (48.41,62.01)

ν-SVR -11.49 0.36 50.08 51.39
RBF kernels (-15.18,-7.19) (-4.68,5.44) (45.83,54.30) (45.60,58.81)
ν-SVR with -9.91 0.32 49.25 48.25
clustering (-12.92,-6.90) (-3.69,4.33) (45.95,52.55) (44.10,52.40)
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Fig. 1. CyA trough concentration predictions within two validation patients.

Actual,−−−− ν-SVR, · · · · · · · MLP, · − · − · ELMAN

88% with theν-SVR and to a 75% with the MLP. Support Vectors
are mainly placed in the early post-operatory period (68% of them
in the early three months) and change of cluster according to high
levels in CV[%].

Conclusions In this paper we have proposed the combination of
clustering and a state-of-the-art technique for knowledge gain and ac-
curacy improvement in a complex pharmacokinetic prediction prob-
lem. By means of clustering we can identify patients’ state and their
future evolution, specifyconfidenceintervals for each cluster predic-
tion and discover important and meaningless patient’ factors all the
time. The power and versatility of the SVR machines allowed fast
and reliable prediction schemes.

Further work is tided up to benchmark Incremental Learning with
SVR approaches and Non-Linear Mixed-Effects Modelling (NON-
MEM) which is a commonly used method in population pharma-
cokinetics.
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