Development of Robust Inferential Sensors

Industrial Application of
Support Vector Machines for Regression

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Jordaan, Elsie M.

Development of robust inferential sensors : industrial application of
support vector machines for regression / by Elsie M. Jordaan. -
Eindhoven:

Technische Universiteit Eindhoven, 2002.

Proefontwerp. - ISBN 90-386-0582-X

NUR 984

Subject headings : machine learning / robust statistics /

intelligent control systems / artificial intelligence

2000 Mathematics Subject Classification : 68T05, 62G08

Reproduction: Universiteitsdrukkerij TU Eindhoven

This work has been sponsored by The Dow Chemical Company.

Development of Robust Inferential Sensors

Industrial Application of
Support Vector Machines for Regression

PROEFONTWERP

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. R. A. van Santen, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 18 december 2002 om 16.00 uur

door

Elsie Maria Jordaan

geboren te Groblersdal, Zuid-Afrika

De documentatie van het proefontwerp is goedgekeurd door de promotoren

prof.dr. J. Wessels
en
prof.dr. E.H.L. Aarts

Copromotor:
dr. G. F. Smits

Aan my ouers,
wat my van God geleer het.

Summary

The aim of the research was to investigate and further develop the technology for
building and operating robust inferential sensors. Inferential sensors are mathematical
models used to infer or predict the outcome of processes. Since the processes are not
static, the inferential sensor needs to be adaptive to changing conditions in order to
remain valid for an extended period of time. The technology needed for developing an
adaptive inferential sensor requires the integration of its operational and application
requirements into modelling software. Therefore, as a first step in this research project
the design requirements of the inferential sensor first had to be defined. The following
design requirements were identified: (1) complexity control; (2) ability to use high-
dimensional data; (3) robustness; (4) generalisation ability; (5) data compression and
outlier detection; (6) incorporation of prior knowledge; (7) self-diagnostic capability
and (8) adaptive behaviour.

A new kind of learning machine, the Support Vector Machine (SVM), is used, since
it best meets the first three design requirements. These three design requirements
characterise the learning requirements of inferential sensors and are discussed in Part I
of the design thesis. In the design thesis we focus on regression problems, as regression
is one of the most widespread applications encountered in the chemical industry.

The design requirements (4), (5) and (6) are associated with the application stabil-
ity requirements, which are discussed in Part IT of the design thesis. In this part a new
type of kernel is introduced. It is a mixture of a radial basis function and a polynomial
kernel, which improves the generalisation ability of the inferential sensor model built
on SVM technology. The improved generalisation ability enables the incorporation
of certain types of prior knowledge readily available in the chemical industry. In our
implementation of the data compression and outlier detection applications, we use
new model-based approaches for detecting outliers as well as redundancy.

In Part IIT of the design thesis, which is concerned with the operational require-
ments, the last two design requirements, (7) and (8), are discussed. We investigated
possible ways to evaluate the performance of the inferential sensor. In order to mon-
itor and diagnose its own performance the inferential sensor needs, apart from the
standard error statistics, also a kind of uncertainty level associated with its predic-
tions. In the design thesis we therefore give an overview of various error statistics
for measuring the overall performance as well as discuss a number of possibilities for
determining an uncertainty level of a given prediction. We also discuss various levels
of adaptation that can be implemented and present a support vector based approach
for novelty detection as well.

ii

For the development of robust inferential sensors it is required that the parameters
of the learning machine can easily be estimated or determined. In Part I of the
design thesis a heuristic is derived for estimating the regularisation parameter used
by SVM for regression. Additionally, algorithmic pseudocodes are discussed for the
optimisation of the parameters are given in the chapters where these parameters.

Finally, in Part IV of the design thesis a software tool that combines the SVM
as learning algorithm with the design requirements is presented. A number of design
requirements, like outlier and redundancy detection, are implemented in the form
of application tools. Naturally, the algorithms for optimising the SVM parameters
are implemented as well. The software tool further has a user interface that assists
the user in setting or optimising the parameters and choices. It allows the user to
investigate, analyse and interpret the results obtained. The software has been used
at The Dow Chemical Company for some time and examples of these applications are
given as well.

Contents

Summary

1 Introduction

1.1
1.2
1.3
14

Inferential sensors in the chemical industry
Design requirements o0 o 0 e
Project definition L
Thesis layout in relation to thedesign

I Learning Requirements

2 Complexity Control

21
2.2

2.3

24

2.5

Introduction L L e
Learning from data L o o
2.2.1 The empirical risk minimisation principle
2.2.2 Bounds on the generalisationerror
2.2.3 Structural risk minimisation principle
Support vector machines
2.3.1 Classification case oL ol
23.2 Regressioncase i
Choice of complexity parameters
2.4.1 Size of the insensitive zone (¢)
2.4.2 Ratio of support vectors (v) Lo L
Conclusion e

3 High-dimensional Data and Spaces

3.1
3.2
3.3
3.4
3.5

3.6

Introduction L e e e
Curse of dimensionality 0oL
Kernel functions e
Typesof kernels L e
Choice of kernel and kernel parameters
3.5.1 Radial Basis Function kernel
3.5.2 Polynomial kernel L0000,
Conclusion e e

iii

N~ W =

11

13
13
15
17
20
23
25
26
32
39
39
41
42

iv

4 Robustness

4.1 Introduction.
4.2 Linear e-SVM for regression
4.3 Quadratic e-SVM for regression
4.4 Choice of regularisation parameter
4.4.1 Results from the L-curve method
442 Estimatefor C
44.3 Experimentalresults
4.5 Conclusion o0 n

II Application Stability Requirements

5 Generalisation Ability

5.1 Introduction.
5.2 Interpolation and extrapolation
5.3 Mixed kernel approach
5.4 Industrial application
5.5 Conclusion 00 0oL

6 Data Compression and Qutlier Detection

6.1 Introduction.
6.2 Outlier detection
6.3 Datareduction,
6.4 Industrial example 0.
6.5 Conclusion

7 Incorporate Prior Knowledge

7.1 Introduction.
7.2 Boundary information,
7.3 Multi-dimensional scaling
7.4 Variablee 0 o000
75 Conclusion 0.

IIT Operational Requirements

8 Adaptivity

81 Introduction.
8.2 Novelty detection oL,
83 Adaptationlevels
84 Transduction

8.4.1 Euclidian distance

8.4.2 Delaunay tesselations
85 Conclusion

CONTENTS

CONTENTS v

9 Self-Diagnostic Capabilities 135
9.1 Imtroduction e 135
9.2 FErrorstatistics L L 136
9.3 Classical confidence L o o 141
9.4 FError bar estimation L L L ool 143
9.5 Model disagreement L oo oo 144
9.6 Conclusion e 145

IV Implementation 147

10 Implementation of Software 149
10.1 Introduction o oL L 149
10.2 Applications of Part To oo oo o 151

10.2.1 Complexity control oo 151
10.2.2 Handling high-dimensional data. 153
10.2.3 Robustness Lo e 155
10.3 Applications of Part ITo o oo oo oo 156
10.3.1 Generalisation ability oL 156
10.3.2 Data compression and outlier detection 156
10.3.3 Incorporating prior knowledge 156
10.4 Applications of Part TIT oo o oo 157
10.4.1 Adaptivity oL e 158
10.4.2 Self-diagnostic capabilities 000, 158
10.5 Miscellaneous features L Lo 160
10.6 Conclusion o L Ll e e 165

11 Conclusions 167

Bibliography 172

Samenvatting 181

Acknowledgements/Dankwoord 183

Curriculum Vitae 185

vi

CONTENTS

Chapter 1

Introduction

1.1 Inferential sensors in the chemical industry

Chemical and petrochemical plants increasingly rely on information from measure-
ments in the plants to ensure quality of products and enable control [40]. There are
mainly two types of chemical processes which are frequently used, namely continuous
and batch processes [49]. Each type has its own issues to consider with respect to
monitoring and control. However, one problem experienced by both types is that
in many processes some process outputs are measured infrequently due to sampling
limitations, which prevents early detection of disturbances in the process [100]. The
early and accurate detection of the operational failure of a process plant and its
associated instrumentation and control manipulators are of increasing industrial im-
portance. Off-specification processes can result in poor product quality, lead to plant
shutdowns, environmental contamination, or even be a hazard to human life [40].

If off-specification processes are detected quickly and accurately, the gains in pro-
ductivity can be enormous [26]. Therefore, there is a need for real-time analysis in
process plants. Real-time information from online analysers is the basis for effective
process monitoring. Hardware online analysers are able to measure a wide variety
of properties. However, there are many instances where hardware analysers are im-
practical due to costs, corrosion, maintenance, or other factors. Inferential analysers
are therefore used to substitute hardware analysers. These inferential analysers are
sometimes called soft(ware) sensors, inferential sensors or virtual online analysers
[40]. They are in fact mathematical models implemented in computer software to
calculate the analyser value or laboratory value as a function of process variables.
Inferential sensors therefore often replace a hardware sensor and can be used for
investigating what-if scenarios, alarm handling or optimisation of processes.

The process of constructing these mathematical models can take many forms. If
possible these models are derived from first principle laws. But more often these
models have to be derived from empirical data obtained from the production process,
a pilot plant or the laboratory [40]. The models derived from empirical data can
take two forms. One is a closed form formula in terms of the process variables. The
classic statistical methods like (nonlinear) least squares (LS) and ridge regression are

2 CHAPTER 1. INTRODUCTION

examples of closed form formula empirical models [71],[11]. The other form is data-
driven models which are expressed in terms of the observations. These models are
often called black-box methods since the expression of the approximating function
is not easily understandable in terms of the process variables [14]. Neural Networks
(NN) and Support Vector Machines (SVM) are examples of data-driven models.

Inferential sensing using NNs has been applied successfully to thousands of appli-
cations worldwide in all areas of manufacturing and has therefore become the object
of serious industrial research over the past decade. Three examples of vendors of com-
mercial software for developing inferential sensors are Pavilion Technology(Process In-
sights) [563], Aspentech(IQModel) [2],[64] and Fisher-Rosemount Systems(Intelligent
Sensor ToolKit - ISTK)[57]. However, in practice at The Dow Chemical Company, the
inferential sensors developed using the commercial software showed several deficien-
cies with respect to robustness, more specifically complexity control, generalisation
capabilities and long-term reliability [85]. investigate the process of building these
inferential models.

The process of constructing data-driven models is called machine learning. Ma-
chine learning is part of a larger field of methods for the estimation of dependencies
from data [11],[39]. The specific method of learning (or learning machine) used is one
of the most important choices to make since the type of learning machine determines
the characteristics of the resulting data-driven model. Each learning machine has
certain characteristics that influence the overall performance of the inferential sensor.
Most of the work being done in inferential sensor development is therefore concen-
trated on the learning part. However, inferential sensor development has many more
issues to consider apart from the modelling process.

A typical project to develop a inferential sensor would involve a series of steps
like data analysis, data reduction, development of transforms, model building, model
explanation, implementation of the sensor and operation of the inferential sensor
within the plant [40]. If this whole process is worked out and completed successfully,
there is still one major aspect that limits the lifetime of a typical inferential sensor:
The inability to adapt to changes [112]. Almost none of the processes being modelled
is static or has been sampled over the full operating range before the development of
the inferential sensor. This usually leads to a slow degradation of the performance of
the inferential sensor over time and may eventually lead to its dismissal by the plant
engineers. One solution could be that there is an extensive maintenance program to
rebuild these inferential sensors whenever necessary [112]. However, this approach
only works when there is a limited number of inferential sensors in operation at any
given time. A significant scale-up in the number of inferential sensors to several
hundreds would rapidly lead to an unmanageable situation.

Probably the only way to implement high-volume inferential sensors in any en-
vironment is if the following two concepts are developed: Firstly, the technology to
build more intelligence into the inferential sensor itself, so that the system is able to
diagnose its own performance. Secondly, the ability of the inferential sensor to be-
come adaptive with respect to the changing environment. These two aspects are not
addressed to any significant extent by the vendors of any of the packages that support
inferential sensor development at this time. Furthermore, the inferential sensor not
only has to perform outlier detection and novelty detection, but also use a learning

1.2. DESIGN REQUIREMENTS 3

machine that has the ability to control the complexity of the model. All of these
will increase the effectiveness of the inferential sensor to predict future measurements
accurately.

The long term impact of using adaptive and intelligent inferential sensors is
twofold. Not only will the production of various processes in chemical plants be im-
proved tremendously, but the cost of maintenance of currently used inferential sensors
will be cut as well.

In a previous study [33], a new type of learning machine, called the Support Vector
Machine (SVM) [106], has been investigated and it was found that it exhibited many of
the mentioned properties and characteristic required for the adaptive and intelligent
inferential sensor. The research therefore focussed on the SVM method and also
engineered a number of adaptations to the existing method in order to meet several
other requirements.

On a higher level, we observed that the nature of the various properties and
requirements is such that they can be put forward as a set of design requirements
necessary for the development of an adaptive, intelligent, online inferential sensor.
Therefore, in the light of this being a design thesis, the research is presented in terms
of the design requirements.

Several of the design requirements have also been implemented together with the
SVM into a software tool. This software tool is currently being used by research
engineers of The Dow Chemical Company for the construction of inferential sensors
[41]. The software has also been used in various projects for data analysis and mate-
rials design. The design thesis will also present a number of examples showing these
industrial applications.

1.2 Design requirements

In the previous section several properties and characteristics of a inferential sensor
were mentioned. The nature of these properties and characteristics are such that they
can be used to describe design requirements for the inferential sensor. In this section
a number of design requirements is given and the properties and characteristics of the
inferential sensor that are associated with each instance are briefly explained.

Complexity control

Inferential sensors are often prone to underfitting or overfitting the learning data
[22]. Underfitting occurs when the model fails to capture all variability in the data.
Overfitting is exactly the opposite: The model also fits the noise present in the data.
In both cases, the inferential sensor will have a sub-optimal ability to predict on the
long run new, unseen data points. This may seriously affect its reliability as well as
its lifespan.

The root cause of underfitting and overfitting can be explained in terms of the
complexity of the model. A model’s inherent complexity determines how much vari-
ability in the data it can account for. If too much complexity is used, the variability in
the data due to noise is modelled as well. Thus, overfitting occurs. If the complexity

4 CHAPTER 1. INTRODUCTION

is too low and the model fails to account for the true variability, it is said to underfit
[14],[11].

It seems straightforward that the solution to the problem is to choose the model
from a set of functions that have the right complexity. However, it is seldom known
what the true complexity of the functions should be [106],[11]. In classical modelling
the set of functions is defined a priori without knowing whether the set of functions
actually possesses the right level of complexity. Many methods therefore try to over-
come this problem by adjusting the complexity recursively until an appropriate level
of complexity is found. There are however no guarantees that the complexity is in
fact optimal. Finally, even if the complexity level is known there is often no way of
controlling the complexity during modelling.

In the context of inferential sensor development two things are required with re-
spect to complexity, i.e. automatic optimisation and control.

Using high-dimensional data and spaces

In the past ten to fifteen years, the number of variables measured in a process plant
has increased dramatically. The reason is that the industry began to understand that
in order to improve their processes, they need to know exactly what has an influence
on it. Currently it is not rare for scientists to receive data sets with hundreds of
variables [39].

Since most of the problems encountered in real-life are nonlinear, linear learning
machines map the input data into a higher dimensional space where the learning
capability is increased [39],[11]. This higher dimensional space is also called the feature
space. However, as the number of dimensions grows the dimensionality of the feature
space can become computationally unmanageable. Furthermore, with an increasing
number of dimensions the number of data samples needed for a sufficiently high
sampling density increases exponentially [11]. A high sampling density is necessary
to ensure that the learning machine can model more complex functions well. The
phenomenon that the learning machine’s computational and predictive performance
can degrade as the number of input dimensions increases, is often called the curse of
dimensionality [11],[10],[106].

One could seek to bypass the curse of dimensionality through dimensionality re-
duction methods. However, even after such measures are taken industrial data sets
may still contain too many dimensions for classical learning machines. Therefore, the
inferential sensors used in industry are required to use not only high-dimensional data
sets but also overcome the curse of dimensionality.

Robustness

Inferential sensors often have to operate with data that contain noise and several
outliers, and with the possibility that all kinds of changes may occur in the plant.
The noise present in data sets obtained from industry are often such that it is neither
constant nor normally distributed. Furthermore, the presence of outliers is often not
known beforehand and they are often not easy to identify. In other words, industrial
data sets are most of the time messy.

1.2. DESIGN REQUIREMENTS)

In the development of a inferential sensor, one has to take the noise into account
as well as keep in mind that the noise is rarely constant over the whole input space.
With respect to outliers: There are two ways of dealing with outliers, namely remove
them or use techniques that are insensitive to them [11]. As many outlier detection
algorithms do not work well with high-dimensional data sets, the presence of some
outliers in the data cannot be ruled out [1]. It is very important that decisions about
the process are not made based on the information conveyed by outliers [68]. The
inferential sensor therefore has to be made insensitive to outliers. The term robustness
is often used in industry to describe the inferential sensor’s sensitivity to perturbations
in the variables, parameters or learning data [22],[68].

One characteristic aspect of any inferential sensor is that it should not only make
accurate predictions, but also be robust to moderate changes in the data [22]. There-
fore the learning machine is required to resolve the subtle trade-off between accuracy
and robustness.

Good generalisation capabilities

Although many measurements are being taken in a process, a process in a pilot
plant cannot be run over the whole range of possible process conditions to obtain
information over the whole input space. It is too expensive and very time consuming.
The result is that the learning data often cover only a small part of the input space.

Therefore, when a process is in operation on the plant it may venture into operating
regions that were unknown at the time of modelling. Most empirical models, such
as NN’s, do not extrapolate well [70]. In many inferential sensor applications efforts
are made to restrict the inferential sensor’s predictions to the known input space [70].
However, it is often expected by the process engineers that the model is able to predict
unseen data within a reasonable distance from the known input space well. And for
unseen data that are too far away, a “graceful degradation” of the model is preferable.
That means, the model does not become instable and exhibit erratic behaviour.

The requirement for the inferential sensor is therefore that it is able to predict
unseen data in regions of low data density in the known input space as well as regions
that are outside the known input space.

Performing data compression and outlier detection

The quantity of observations taken in plants has increased tremendously over the past
decade. In contrast to fifteen years ago, when there were never enough data, the size
of data sets today is sometimes unmanageable. Compressing data sets with minimum
loss of information is an essential capability for modern modelling tools [22],[14]. Data
compression involves the detection and removal of redundant information. That is
information that already exists and is only duplicate [14].

The other task under consideration is that of detecting and removing faulty mea-
surements, often called outliers. In the design requirement on robustness we gave
reasons for making the inferential sensor insensitive to outliers. Thus it would seem
that outlier detection is not required anymore. However, outliers often contain useful
information on abnormal behaviour of the process described by the data [1]. Con-

6 CHAPTER 1. INTRODUCTION

sequently, outlier detection still needs to be done in order to fully understand the
behaviour of the processes under consideration.

Applications such as redundancy detection and outlier detection are therefore
important requirements in the development of inferential sensors.

Incorporating prior knowledge

As processes get more complicated and more research is being done on these processes,
more information about the physical laws, constraints and conditions is becoming
available. It is to be expected that when prior knowledge is included into the learning
process, the resulting model will have better generalisation abilities. The inferential
sensor built on such a model may be more intelligent and should be more reliable [40].

It is therefore required that the new generation of inferential sensors should not
only be built on empirical data but also try to incorporate any other form of infor-
mation that is available.

Adaptivity

Due to the dynamic behaviour of many of the processes involved in industry, the
inferential sensor needs to be retrained regularly. This leads to high maintenance
costs and limited use of inferential sensors in industrial processes [40]. To increase the
lifespan of the inferential sensor and reduce the costs, the inferential sensor therefore
has to become adaptive to the changing conditions [112].

However, in order to adapt a inferential sensor to new information or conditions,
the inferential sensor first needs to know when something novel has occurred. It is
not a question of recognising obvious changes in the process like new equipment or
procedures, but rather one of detecting subtle changes like e.g. seasonal behaviour or
the slow degradation of a catalyst [112].

The final requirement is that the inferential sensor to be able to perform novelty
detection and implement a procedure to adapt the model to the changed conditions
which were detected as novel information.

Self-diagnostic capabilities

In industry, inferential sensors are often used for monitoring the performance of a
process [70]. Therefore, it is necessary that the inferential sensor supplies the process
engineer with information about the accuracy of its predictions. The inferential sensor
thus monitors its own performance [22]. This requires that more intelligence is built
into the inferential sensor so that a process engineer is warned early enough that
the current model is not applicable anymore to the current process conditions. Thus
reducing the manufacturing of off-specification products and preventing a false sense
of trust.

The requirement for the inferential sensor is that it should have self-diagnostic
capabilities in order to evaluate its own reliability.

1.3. PROJECT DEFINITION 7

1.3 Project definition

The main goal of the research project is to develop a framework for building and
operating adaptive, intelligent inferential sensors on the basis of SVM technology.

This short description implies a lot. The character of the research is not only to do
fundamental research but also to present a practical methodology that should make
it easier for the user to construct a inferential sensor that meets a number of design
requirements, exhibits certain characteristics and has the ability to perform various
tasks. The research further investigated a promising new learning machine, the SVM
(in particular the SVM for regression problems), to determine whether the resulting
inferential sensor has the potential of satisfying the requirements that are imposed.

Several of the activities necessary to reach the goal are clearly of the research type.
For example, the SVM for regression is still in its infancy and the majority of the
research currently being done is for classification applications. Therefore, many of the
results are only applicable for classification problems. Extending these results to re-
gression applications often turns out to be far more difficult than expected. Therefore,
most of the research activities are aimed at unresolved issues of SVM for regression.
However, the research should always be executed with the sole purpose of realizing a
specific design requirement or applicability in inferential sensor development.

The other major activity was the implementation of the SVM technology into a
software tool combined with a number of design requirements in the form of applica-
tion tools. Further activities consisted of obtaining references of publications related
to inferential sensor development and SVMs for regression as well as constructing a
data base for future queries.

General information on the design philosophy and its relation to the demands in
industry can be found in a publication of the Stan Ackermans Institute (Centre of
Technological Design) at the Eindhoven University of Technology [96].

1.4 Thesis layout in relation to the design

Each chapter of the thesis represents one of the design requirements as discussed in
Section 1.2. The design requirements of the inferential sensor can be divided into
three parts:

1. Learning Requirements
These requirements influence the most basic structure of the learning machine
or modelling method to be used, namely the inductive principle implemented,
possible loss-functions to be used and what kind of transformation is used. The
design issues associated with this are

e complexity control
¢ high-dimensional spaces
e robustness
2. Application Stability Requirements

Here the requirements that affect the learning machine’s performance are consi-
dered. These requirements either improve the behaviour of the resulting model

8 CHAPTER 1. INTRODUCTION

changing the learning method, or are considered to be used in pre-processing
applications. The following design issues are associated with this criterion

e generalisation ability
¢ incorporating prior knowledge

¢ data compression

3. Operational Requirements
The requirements considered here are those that define the capabilities of the
operational inferential sensor. These requirements are not part of the (off-line)
learning process. The design issues are

¢ adaptivity

o self-diagnostic capabilities

Therefore, there are three main parts in the thesis. Part I involves the inherent
learning requirements of the inferential sensor, Part II addresses the application sta-
bility requirements and Part III covers the operational requirements of the inferential
Sensor.

In Chapter 2 the first requirement, complexity control, is presented. The chapter
discusses the SVM method and shows how complexity control is obtained by using
the VC-dimension. The research was mainly concerned with the SVM for regression,
since mainly regression applications are encountered in the chemical industry.

The chapter is followed by the second requirement which is about working with
high-dimensional data. The chapter shows how SVMs use kernel functions to handle
high-dimensional data efficiently and discusses how that enables the SVM to partially
overcome the curse of dimensionality. It also discusses the characteristics of two main
types of kernel functions, namely local and global kernels.

The final chapter of Part I is Chapter 4 which covers issues in the requirement
concerning robustness properties. For robustness it is required that the inferential
sensor is insensitive to noise and outliers. Different types of loss functions can be
used to control the effect of errors in the data. The first contribution of the research,
also presented in this chapter, is a fast and effective way to estimate the regularisation
parameter which controls the trade-off between the error from the loss-function and
the complexity.

Part II starts with Chapter 5, that deals with the generalisation capability. In this
chapter industrial implications of generalisation are shown. Another contribution of
the research, that is the engineering of a new kind of kernel which improves the
extrapolation ability of the SVM, is also presented in the chapter.

The data compression design issue is discussed in Chapter 6. In this chapter an
application which is based on the characteristics of the support vectors obtained by
the SVM, is used to compress a data set by either removing redundant information
or discarding outliers.

The chapter is followed by the design issue which involves the incorporation of
prior knowledge. Here two contributions from the research can be found, i.e. the use
of boundary information and the use of multi-dimensional scaling. The chapter also

1.4. THESIS LAYOUT IN RELATION TO THE DESIGN 9

investigates the practical use of another form of prior knowledge presented recently
by [78]. This chapter concludes Part II.

Chapter 8 on the adaptive capabilities of a inferential sensor is one of the design
issues discussed in Part III on the operational requirements. One of the main ingre-
dients for adaptivity is the ability to detect novel information. A particular form of
adaptivity is the transductive approach, which is discussed and illustrated in detail.
The chapter finally proposes possible adaptation levels.

Part IIT aptly concludes with Chapter 9 on the self-diagnostic capabilities. An
overview of various standard error statistics used to evaluate the overall performance
of the inferential sensor including a measure from statistical learning theory (SLT)
is given. In addition, the problems associated with the standard approach of con-
structing confidence limits are discussed and we briefly visit one of the most recent
advances made in assigning uncertainty to predictions made by SVMs, i.e. the error
bar estimation [20]. Finally, a possible non-statistical alternative, a model reliability
measure used by NNs as well as genetic programming (GP), is considered [83].

Part IV contains a chapter which gives an overview of the software tool in which
a large number of the design requirements and results obtained from the research is
implemented. An additional feature is a complete user interface for setting and op-
timising parameters, selecting optimisation types and scaling choices, and displaying
and analysing the performance of SVMs.

In the final chapter of the thesis, the conclusions are presented. In Figure 1.1 the
relationships between the chapters are shown. The schematic overview also provides
information about which chapters are pre-requisites for a specific chapter.

Note that in Chapters 6 to 8 the nature of the thesis is somewhat different than
in the preceeding chapters. Until Chapter 5, the proposed methods are meticulously
tested in simulations and their merits and disadvantages are discussed. From Chapter
6 onwards, the thesis is more of an exploratory nature. We show possible applications
as well as indicate various areas for future research. However, we feel that these
exploratory chapters still need to be present in the thesis in order to give a full
overview of the issues involved with the design requirements of inferential sensors.

10

CHAPTER 1. INTRODUCTION

Part I: Part II:

Learning Requirements Application Stability Requirements
Chapter .2: C}.lapte? 3: Chapter 5: Chapjuer 7:
Complexity — High-Dim. Generalisation| | Prior

Control Data eneransatio Knowledge

N /
Chapter 4: Chapter 6
Robustness Dat.a Reducugn
Outlier Detection
Part III:
Operational Requirements

r'4

Chapter 9: L Chapter 8:

Self-Diagnosis Adaptivity

‘ﬂ’ Part IV
Chapter 10:

Implementation Software Tool

Figure 1.1: Relationship between chapters in the thesis.

Part 1

Learning Requirements

11

12

Chapter 2

Complexity Control

2.1 Introduction

Inferential sensors often suffer from underfitting or overfitting the learning data [14].
Underfitting occurs when the model used has not the capacity to explain all variability
in the data. Overfitting is exactly the opposite: the model has so much capacity that it
also fits the noise present in the data. The root cause of underfitting and overfitting is
explained in terms of the complexity of the model [11],[106],[39]. A model’s inherent
complexity determines how much variability in the data it can account for. If too
much complexity is used, the variability in the data due to noise is modelled as well.
Thus, overfitting occurs. If the complexity is too low and the model fails to account
for the true variability, it is said to underfit.

Unfortunately, scientists seldom know what the optimal complexity of a model
is or how to control it during the modelling phase. Therefore, there is a need for
a inferential sensor that uses the optimal complexity for the given data set and has
the ability to control it [22]. This is perhaps one of the most important design re-
quirements a reliable inferential sensor has to meet, since it is known that an optimal
complexity is a pre-requisite to good generalisation properties [106]. Under genera-
lisation we understand the model’s ability to predict unseen data within the known
learning space 1.

To address the problem of complexity one has to investigate the properties of
the learning machine used in the modelling step [106],[11]. Many types of learning
machines are constructed and currently used. The main difference between different
types of learning machines lies in which inductive principle is used and how it is
implemented [106]. The inductive principle tells us what to do with the learning data,
i.e. how to enter the learning data into the learning machine. How to select the best
model is a matter determined by the specific learning method that is used. Some well-

I'The design requirement Generalisation Ability discussed in Chapter 5 is broader than what is
assumed here. This design requirement considers not only the interpolation ability of the inferential
sensor, but also the extrapolation ability. Interpolation is defined as the ability to predict seen and
unseen data within the known learning space. Under extrapolation we understand that all predictions
are made outside the known learning space.

13

14 CHAPTER 2. COMPLEXITY CONTROL

known inductive principles include regularisation [101], Structural Risk Minimisation
(SRM)[108], Bayesian inference [66],[110] and Minimal Description Length (MDL)
[72].

In the mid 1980’s, when NNs were introduced, scientists observed that this new
type of learning machine had not only a good learning capability but also had the po-
tential of good generalisation abilities [102]. It was not until recently, that the reason
was fully understood: NNs implemented the SRM principle instead of the Empirical
Risk Minimisation principle (ERM) [106]. The SRM comes from a fairly complicated
theory, called Statistical Learning Theory (SLT) which has been developed over the
past thirty years by Vladimir Vapnik [108] and others [36],[37],[38],[104]. Since the
publication of SLT results, the failure of many learning machines in small sample
statistics was finally explained by their lack of complexity control. Where classical
statistics deals successfully with large sample size problems, SLT is the first com-
prehensive theory built towards small sample learning problems. It has been shown
that the inherent complexity of models based on empirical data is dependent on the
sample size. Therefore, by taking into account the sample size, better solutions can
be obtained than by just applying asymptotic results from classical statistics [106]
[81].

It is important to note that as the number of dimensions in a data set increases, the
number of observations should increase exponentially to represent the same density
of information [11]. For example, in a five-dimensional data set a sample size of tens
of thousands is still considered as small. In the chemical industry, where the number
of dimensions in data sets has increased dramatically, scientists are dealing almost
exclusively with small sample statistics.

As recent as 1993 a new kind of learning machine, called Support Vector Machine
(SVM), was introduced into the artificial intelligence community [4],[105]. It makes
use of the SRM principle. SVMs minimise the complexity of the model whilst max-
imising the learning capacity. This combined effect leads to a better generalisation
ability of the model. The SVM method can be used for classification, regression es-
timation and density estimation [106]. Extensive research is currently being done for
pattern recognition, which is a classification problem. Unfortunately, much less is
being done in the area of regression estimation and density estimation. In the che-
mical industry, the majority of problems encountered are of the regression type and
therefore our investigation focusses on the regression estimation problem.

In this chapter we give a literature review of issues involving complexity control.
We first present the general setting of supervised learning tasks. Thereafter, the
three main issues of SLT are discussed in short: Firstly the shortcomings of the
ERM principle; Secondly, an alternative risk principle namely the SRM principle;
And thirdly, a particular implementation of the SRM principle leading to a new kind
of learning machine, the SVM, which can be used in industry for inferential sensor
development.

2.2. LEARNING FROM DATA 15

Distribution-Based Distribution-Free
(Classical Statistical Techniques) (Data-driven Techniques)

Regression Supervised Learning
Function Approximation) (Input data and response available)

Classification
(Pattern Recognition)

Density Estimation
(Probability Distribution
Estimation)

Unsupervised Learning
(No response, only input data)

— l ™~

Principle Component Density
Analysis (PCA)

Clustering Estimation

Figure 2.1: Schematic view of the general setting of learning tasks.

2.2 Learning from data

There are two ways to learn from data: supervised and unsupervised learning. For
supervised learning a supervisor is available in the form of observed response data.
Regression estimation and classification are typical problems solved through super-
vised learning. In unsupervised learning, no supervisor is available, thus no response
data. Density estimation is a typical example of unsupervised learning. In Figure
2.1 an overview of the different learning problems and their connection to the type of
learning is given.

In pratice there is often no prior knowledge is available on the probability dis-
tribution models or probability density functions. This is especially the case in the
chemical industry. In order to avoid making assumptions on the underlying distri-
bution, one has to make use of distibution-free learning. Fortunately, in most cases
response data are available and thus supervised learning can be applied. Note that
some learning methods can be applied to both supervised and unsupervised learning.
From here on we are only concerned with distribution-free supervised learning.

The supervised learning problem is the problem of finding a desired dependency
or structure using a limited number of observations. The general model of learning
from examples consists of three components:

1. A generator (G) generates vectors x € R” from a fixed, unknown probability
distribution function F(x).

2. A supervisor (S) returns an output value y € R to every input vector x according
to a conditional distribution function F(y|x),y € Y, also unknown.

16 CHAPTER 2. COMPLEXITY CONTROL

3. A learning machine (LM) selects the best approximating function from a set
of functions f(x,a),a € A, where A is a set of parameters, on the basis of the
given observations (x;,¥;),i=1,...,4,.

Generator Supervisor

y
Learning y
Machine

Figure 2.2: The General Learning Machine.

The relationships between the three components (G), (S) and (LM) are given Figure
2.2. The learning machine has to choose from the set f(x,a),a € A, the function
which best approximates the response of the supervisor. All learning machines ba-
sically map an input vector x into a higher dimensional feature space U and then
construct an approximating function in this features space.

The best approximating function is the function that has the lowest risk of making
errors. That is, when the difference between the response y of the supervisor of a given
input x and the response § = f(x,ap) of the learning machine is the lowest. This
difference or discrepancy is determined by a so-called Loss function, L(y, f(x,a)).
The goal is to minimise the expected value of the loss, given by

R@= [L. f6xa)dFex) 1)

Equation 2.1 is called the Risk functional. Note that the joint probability function
F(x,y) = F(x)F(y|x) is unknown. The only information available is the training set
of £ independent and identically distributed observations,

(xlayl)a"'7(xl7yl)7 (22)

drawn according to F(x,y).

The difference between different types of learning machines is based on two fea-
tures: Firstly, on which inductive principle is used; Secondly, on which type of loss
function that is used. For example, the ERM inductive principle is used by least
squares and maximum likelihood methods, whereas the Ls-loss function defines a
regression learning machine. Next, we state the two main learning problems for su-
pervised learning: clagsification and regression estimation. Each learning problem
requires the use of a different loss-function.

2.2. LEARNING FROM DATA 17

Classification

For classification problems the response y of the supervisor takes only discrete values.
Every value identifies a certain class. Let y take only two values and consider the
loss-function:

1 ify=f(x,a)

1 ity £ fixa). 23)

Ly, f(x,a)) = {

The risk functional (2.1), using the loss-function in (2.3), determines the probabi-
lity that the indicator function f(x,a) gives a different answer than the supervisor
does, that is to make a classification error. The learning problem for classification
is therefore defined as finding the indicator function which minimises the probability
of making classification errors when the probability measure F'(x,y) is unknown, but
the learning data in (2.2) are given.

Regression estimation

In the problem of regression estimation, the response y of the supervisor can be
any real value. The functions f(x,a),a € A, are also real valued and represent
the potential regression function. A typical loss function that is used for regression
problems is given by

Ly, f(x,@)) = (y - f(x,a))" . (2.4)

The risk functional that uses (2.4) as loss-function determines the prediction error of
the regression function f(x,) with respect to the supervisor’s response. Therefore,
the learning problem for regression is that of finding the regression function which
minimises the probability of making prediction errors when the probability measure
F(x,y) is unknown, but the learning data in (2.2) are given.

2.2.1 The empirical risk minimisation principle

The risk functional R(a) in (2.1) cannot be minimised since the probability measure
F(x,y) is unknown. The risk functional R(ca), as it is stated in (2.1), is therefore
only an a posteriori measure. In order to minimise the risk functional the unknown
probability distribution F(x,y) is replaced by the empirical distribution, based in the
learning data given in (2.2).

Using this inductive principle the risk functional in (2.1) is replaced by the empi-
rical risk functional

£
1
Remp(a) = ZZL(yiaf(xiaa))a (25)
i=1
which is constructed on the basis of the given learning data set (x;,v;),1 =1,..., 4.

The inductive principle applied in (2.5) is known as the Empirical Risk Mini-
misation (ERM) principle. The ERM is very important in learning theory. It is a
principle which is used in classical methods like least squares and maximum likeli-
hood [106],[11]. The different learning machines arise from using different types of

18 CHAPTER 2. COMPLEXITY CONTROL

loss-functions. For example, the least squares method minimises

£
Remp(@) = 5 3 (vi — f(x6,))°. (2.6)

=1

Consistency of the ERM principle

In order to have a successful learning process, it is required that the learning machine
achieves a small value of actual risk. An important question has to be asked: When
does a learning machine achieve a small value of actual risk and when does it not? At
first, one would think that the smallest value of the empirical risk should be sufficient
for achieving a small value of actual risk. Unfortunately, the answer is not that
straightforward. A small value of the ERM does not necessarily imply a small value
of actual risk. For that, the ERM principle needs to be consistent.

Consider a given set of identically and independently distributed (i.i.d.) learning
data z; = (x;,¥:),i =1,...,£. Let Q(z, ag) be a function that minimises the empirical
risk functional in (2.5), that is

£

Remp = ZQ(ziaa)'

=1

Definition 1. The ERM principle is consistent for a set of functions Q(z,a),a € A,
and the probability distribution function F(z) if the following two sequences converge
in probability to the same limit:

P
R(ou) P ;IelﬁR(a) (2.7)

P
and Remp(oy) P éIGnZR(a). (2.8)

This means that the ERM is consistent if both the expected risk (2.7) and the ERM
(2.8) converge to the actual risk, that is the infimum of the expected risk, as seen in
Figure 2.3. From the figure it is quite clear why learning machines based on the ERM
principle have difficulties with small samples. The ERM will only converge to the
actual risk, when the number of observations in the learning data tends to infinity.

To construct a learning machine that is consistent, even for small samples, we
need to know the necessary and sufficient conditions for consistency. These are stated
in the Key Theorem of Learning Theory. The proof of the theorem can be found in
[108].

Theorem 1. Key Theorem of Learning Theory. For bounded loss functions,
the ERM principle is consistent if and only if the empirical risk converges uniformly
to the actual risk in the following probabilistic sense:

lim P |sup |R(a) — Remp(a)| > €| =0,Ve > 0. (2.9)

{—co aEA

2.2. LEARNING FROM DATA 19

infaeA R(a)

Remp(a)

{— oo

Figure 2.3: The consistency of the learning process

From the conceptual point of view, the theorem is extremely important for learning
theory. It states that the necessary and sufficient conditions for consistency of the
ERM are determined by the “worst” function in the set of possible functions. Thus,
any analysis of the ERM must result in a “worst-case” analysis [106].

Unfortunately, the conditions (2.9) set in the Key Theorem of Learning Theory
are not useful for constructing learning machines, since the bounds they pose are
non-constructive as they cannot be implemented directly into learning algorithms.
Fortunately, Statistical Learning Theory derived constructive bounds that are valid
for any learning machine. These bounds are expressed in terms of the sample size
£ and the VC-dimension (Vapnik-Chervonenkis) h of the set of functions used by
the learning machine. Furthermore, the VC-dimension provides us with conditions
under which the ERM principle has a fast rate of convergence. Using the concept of
VC-dimension the following holds true:

For a fast rate of convergence and distribution-free consistency of the ERM
principle the necessary and sufficient condition is that the set of approz-
imating functions implemented by the learning machine has a finite VC-
dimension.

A full description of the conditions for consistency as well as the conditions for a fast
rate of convergence of the ERM, can be found in two books by Vapnik [106],[108].

We will not discuss the concept of the VC-dimension in full here, since in the scope
of the rest of the thesis, it is only necessary to know the following.

e The VC-dimension h is a measure of the richness or flexibility of the set of
functions from which the model will be constructed. If the functions are rich

20 CHAPTER 2. COMPLEXITY CONTROL

enough, the learning machine will have sufficient capacity to construct a model
that has a suitable level of complexity for the data available [10].

e For both classification and regression problems, the VC-dimension of the loss-
function L(y, f(x, a)) equals the VC-dimension of the approximating function

f(x,a) [11].

e The VC-dimension for linear indicator functions in a n-dimensional space (as is
used in the loss-function of classification problems), is b = n + 1 [106].

e For the set of real functions in R™ (as is used in the loss-function of regression
problems), the VC-dimension is h = n + 1 [106].

e Generally speaking the VC-dimension of a set of functions does not coincide
with the number of parameters of the set. It can be both larger than the
number of parameters and smaller than the number of parameters. It is the
VC-dimension, rather than the number of parameters, which is responsible for
the generalisation ability of learning machines [106].

For the definitions of the VC-dimension for linear indicator functions and real-valued
function, as well as a number of examples that illustrates the determination of the
VC-dimension see [11].

In Section 2.2.3 an inductive principle which satisfies the conditions for consistency
and has fast rate of convergence even for small samples, is discussed. First, we need
to state constructive bounds on the generalisation.

2.2.2 Bounds on the generalisation error

SLT provides several non-constructive bounds that are conceptually important, but
difficult to determine in learning algorithms. In order to construct learning machines
that are able to control the complexity, we need constructive bounds on the generali-
sation error. The necessity of complexity control can be seen in Figure 2.4, where all
the approximating functions have an empirical risk of zero, but differ in smoothness.
Clearly in this case, the approximating function with highest smoothness will have
better generalisation ability. Note that smoothness is associated with the complexity
of the function [11],[39]. In most practical problems high smoothness indicates low
complexity and vice versa [78]. Thus, smoothness is inversely related to the comple-
xity.

Using the VC-dimension, SLT gives constructive bounds [108]. Furthermore, these
bounds are distribution-free and therefore applicable to any learning machine. Next
we state the bounds for bounded, non-negative functions and for unbounded functions,
since they are used by classification and regression learning machines respectively.

Generalisation bounds for bounded, non-negative functions

For bounded, non-negative functions 0 < Q(z,a) < B and given confidence level
(1 —n) > 0, the bound for the generalisation ability is, with probability of at least

2.2. LEARNING FROM DATA 21

1.5

1.0

0.5

¥ 00

—0.5

—-1.0

—-15 f f f
-3 -2 -1 0 1 2 3

z
Figure 2.4: Various models of different complexities but with equal empirical risk.

1_777

BE 4Rom,
R(al) S Remp(al) + 7 (1 =+ 1+ -ReBip(al)> , (210)

where
h(In(2¢/h) 4+ 1) —In(n/4)
e ?

if the set of functions Q(z,a),a € A, contains a finite number of elements and has a
finite VC-dimension h [108].

The bound in (2.10) becomes large when the confidence level, 1 — 7 is large. If
7 — 0, then & — oo in (2.11) and the right-hand side of the bound grows large. This
means that any estimate obtained from a finite number of samples, cannot have an
arbitrarily high level of confidence. Hence, it is reasonable to determine the confidence

level as a function of the number of samples. Vapnik recommended the following rule
[108]

£=4 (2.11)

4
= min(—,1). 2.12
n (JZ) (2.12)
Thus the bound can be presented as
£ —lInn
R(a) < Remp(a) + @ | Remp(@), w1) (2.13)

where ®(-) is a scalar and called the VC' confidence interval, because it estimates the
difference between the empirical error and the actual error. It is important not to
confuse the term VC confidence interval with the classical confidence interval. Note
that the first term in (2.13) depends on a particular function from the set of functions
whilst the second term mainly depends on the VC dimension [11],[106],[108].

22 CHAPTER 2. COMPLEXITY CONTROL

An analysis of the behaviour of @ as a function of the sample size £ with all other
parameters fixed, shows that & mainly depends on &, which monotonically decreases
(to zero) with £. In Figure 2.3, ® corresponds to the upper bound on the distance
between the two curves for any fixed £ [11]. € also clearly shows the strong dependence
of & on the ratio £/h 2. There are clearly two regimes. One where the sample size
is small and finite which corresponds to a small ratio of £/h. The other where the
sample size is large, results in a large ratio. When the ratio is large, the value of the
VC confidence interval becomes small. The empirical risk can then be used safely as a
measure of the actual risk. However, for a small ratio (small sample sizes), the value
of the VC confidence interval cannot be ignored.

Minimising the VC confidence interval not only ensures that the chosen model
leads to a small risk of making estimation errors, but also comes from a function class
with small complexity. In order to minimise the VC confidence interval, we need to
make the VC dimension a controllable variable. The SRM principle provides a formal
mechanism to achieve that.

Generalisation bounds for unbounded functions

The bounds on the generalisation error for regression problems need to be valid for
unbounded loss-functions, since the bounds on the true function or the additive noise
are not known. This means that there is always the probability of observing large
response values which will lead to large, possibly unbounded, values for the loss-
function. Therefore, strictly speaking, it is impossible to estimate the probability of
such large responses based on the finite training error alone [11],[106],[108].

Fortunately, SLT provides us with some general characteristics on the distribu-
tions of unbounded loss-functions where large values of loss do not occur very often
[106]. These characteristics describe the “tails of distributions”, i.e. the probability of
observing large values of loss. For distributions with light tails, i.e. small probability
of observing large values of loss, a fast rate of convergence is possible.

For the set of unbounded non-negative functions 0 < Q(z,a) < B and given
confidence level (1 —n) > 0, the bound for the generalisation ability is,

R(ay) < M (2.14)

(1+eVe)y ’

where € is defined by (2.11) if the set of functions Q(z,a),a € A, contains a finite
number of elements and has a finite VC-dimension h [108]. The constant ¢ depends
on the “tails of the distributions” of the loss-function. For most practical problems it
is found to be ¢ =1 [11].

The bound in (2.14) provides an upper bound on the expected risk. Asn — 0
(1 — 5 high), the value of £ — oo when the other parameters are fixed. Therefore,
the denominator in (2.14) equals zero and the bound would approach infinity. Again
one can reason that any estimate from a finite number of samples cannot have an
arbitrarily high level of confidence. Thus there is always a trade-off between the
accuracy given by the bound and the degree of confidence in the bound. Furthermore,

2Tn many publications @ is therefore expressed only in terms of £/h.

2.2. LEARNING FROM DATA 23

in terms of the sample size £, it is clear that when £ — oo, the ratio ¢/h is large and
&€ — 0. The denominator in (2.14) then approaches one. Therefore, decreasing the
value of the expected risk is a matter of decreasing the empirical risk. For large
sample sizes the empirical risk can then be safely used. On the other hand, when
the ratio £/h is small, the denominator in (2.14) cannot be ignored. Note that the
denominator is not referred to as the VC confidence interval. However, as with the
VC confidence interval, there is a strong dependence on the ratio of £/h and thus on
the VC-dimension. Also note that the numerator in (2.14) depends on a particular
function from the set of functions.

As in the case for classification, we need to make the VC-dimension a controllable
variable in order to minimise the bound in (2.14). In the next section we argue that
the SRM principle provides the means to do so.

2.2.3 Structural risk minimisation principle

Recall that the ERM principle is only intended for large sample sizes. That is when
the ratio £/h is large and € = 0 in the bound for classification (2.10) or for regression
(2.14). Then the empirical risk is close to the true risk and a small value or empirical
risk guarantees a small true risk. However, when the ratio £/h is small the VC
confidence interval in (2.13) or both the numerator and denominator in (2.14) need
to be minimised.

For small samples the set of functions used in the learning process should have
the right level of complexity in order for the learning machine to be able to generalise
well. Therefore, when constructing learning machines for small samples, we need to
control the complexity of the resulting model. This is achieved by restricting the set
of functions from which the approximating function is chosen, to functions that have
a suitable learning capacity for the number of available learning data.

Under the SRM principle the set S of functions Q(z,a),a € A has a structure
that consists of nested subsets of functions S = {Q(z,a),a € Ax} such that

SiCScCc---CcS.C..., (2.15)

where each element of the structure S; has a finite VC-dimension and should be
either bounded or if unbounded should satisfy some general conditions 2 to ensure
that the risk functional does not grow unboundedly. By definition of the structure,
the ordering of the elements, according to their VC-dimensions, is as follows

hi<hs< - <hg<.... (2.16)

For a given set of £ samples the SRM chooses the function Q(z,af) that minimises
the empirical risk for the functions in the subset Sg, for which the guaranteed risk,
the combined terms in (2.13) for classification and in (2.14) for regression, is minimal.

3 A set of nonnegative functions Q(z,a), o € Ay, should satisfy

wp V@)

= < 1, < 00,
a€Ag E(Q(z,a)

See [108] for more information.

24 CHAPTER 2. COMPLEXITY CONTROL

In both cases the SRM defines a trade-off between the quality of the approximation
of the given learning data and the complexity of the approximating function. One
could see the effect of the trade-off in Figure 2.5.

risk
~ guaranteed risk
» VC confidence interval

Underfitting Owverfitting

N,
N,
N,

empirical risk

h h* hg h (VC-dimension)

Figure 2.5: The structural risk minimisation principle.

In Figure 2.5 it is clear that the SRM principle is concerned with finding the right
balance between the learning ability and the generalisation ability of the learning
machine. If a too high complexity is used by the learning machine, the learning ability
may be good, but the generalisation ability not. The learning machine will overfit
the data. In Figure 2.5, we see that the region to the right of the optimal complexity
h*, corresponds with overfitting of the learning data. On the other hand, when the
learning machine uses too little complexity, it may have a good generalisation ability,
but not a good learning ability. This underfitting of the learning machine corresponds
with the region left of the optimal complexity. The optimal complexity of the learning
machine is the set of approximating functions with lowest VC-dimension and lowest
training error.

Construction of learning machines using the SRM

The implementation of the SRM principle requires the a priori specification of the
structure on the set of approximating (or loss) functions. For such a given set, the
optimal model estimation amounts to the following two steps.

1. Select an element of the structure which has optimal complexity.

2. Estimate the best model of this element.

2.3. SUPPORT VECTOR MACHINES 25

Therefore, unlike classical methods, learning machines that implement the SRM prin-
ciple, provide analytical estimates for model selection based on the bounds for gene-
ralisation error.

There are two approaches of implementing the SRM inductive principle in learning
machines:

1. Keep ®(), the VC confidence interval fixed and minimise the empirical risk
Remp(a).

2. Keep the empirical risk, Remp(c) fixed and minimise the VC confidence interval
B().

NN algorithms implement the first approach, since the number of hidden nodes is
defined a priori and therefore the complexity of the structure is kept fixed.

The second approach is implemented by the SVM method where the empirical
risk is either chosen to be zero or set to an a priori level (the value of the e-insensitive
zone) and the complexity of the structure is optimized. Note that we still have not
provided the exact means for optimising the VC-dimension nor what kind of structure
should be used. We will show in the next section that by using a specific format for the
set of approximating functions and choice of structure, the SVM is able to minimise
the VC-dimension and therefore the generalisation bounds.

2.3 Support vector machines

The second approach to implement the SRM is the support vector machine method,
where the empirical risk is kept fixed while the VC confidence interval is minimised.
In general the SVM maps the input data into a higher dimensional feature space. The
mapping can be done nonlinearly and the transformation function is chosen a priori.
Let us denote this transformation function with ¢(x) for the time being. In Chapter
3 we will discuss these functions in more detail and introduce the concept of a kernel
K(x,%) = (¢(x), (%)) %. In the rest of this chapter x is mainly used. Only during
the final step of deriving the SVM it is replaced with the transformation ¢(x).

In the feature space the SVM finally constructs an optimal approximating function
which is linear in its parameters

fwp(x) = (w,x) +b, (2.17)

where w and b have to be determined. In the classification case, fwp(x) = 0 is
called a decision function or hyperplane, and the optimal function is called an optimal
separating hyperplane. In the regression case, fw(x) is called an approximating
function or in statistical terms a hypothesis. In Figure 2.6, the general scheme of the
SVM is given.

Now let us provide a structure on the set of approximating functions for which the
VC-dimension is minimised. Let ||w]|| define a structure on the set of approximating
functions

fx,a)=(w,x)+b, acA, (2.18)

4The notation (x,z) defines the inner product between vectors x and z.

26 CHAPTER 2. COMPLEXITY CONTROL

Decision rule based on
weights and support vectors

Weights aq,...,an

Nonlinear transformations
based on support vectors
X1y...3XN

Input vector: x;,i=1,...,%
Figure 2.6: The general scheme of the SVM.

such that the elements of the set S4 are analysed using ||w|| < A. Then, if 4; < A3 <
As < --- < A, the set S4 can be nested such that Sa, C S4, C Sa; C--- C Sa,.
Vapnik proofed in [108] that the VC-dimension h of a set canonical hyperplanes in
R™ such that ||w| < A is

h =min (R*4%n) + 1, (2.19)

where all the training data points (vectors) are enclosed by a sphere of the smallest
radius R.

Similarly, for a set of real valued functions in R™ such that ||w| < A, the VC-
dimension is

R2
h = min (p_2 + l,n) , (2.20)

where p is a function of w/ ||w|| and all the training data points (vectors) are enclosed
by a sphere of the smallest radius R.

Therefore, minimisation of || w|| is an implementation of the SRM principle because
a small value of |w|| will result in a small value of h and the VC-dimension A is
consequently minimised.

In the next two sections we will present the implementation of the Support Vector
Machine for classification and regression where ||w| is minimised, and the Remp is
either zero or kept fixed at a certain level.

2.3.1 Classification case

Consider the following collection of learning data

(x17y1)7 ey (xlayl)axi S Rnayl S {_17 1} (221)

2.3. SUPPORT VECTOR MACHINES 27

In the classification problems we want to find a decision rule D(x) = (w - x) + b that
clagsifies without error the learning data in (2.21) into the two classes {x|D(x) = 1}
and {x|D(x) = —1}, based on the data given in (2.21). It is said that such a decision
rule, also called hyperplane, separates the data set without error. At this moment we
assume that the data are separable. We will briefly discuss the non-separable case
later. There exist many hyperplanes that separate the data, but we are looking for
the one that is optimal.

Optimal separating hyperplane

The optimal separating hyperplane not only separates the data without error, it also
has the largest distance between the closest vectors to either side of the hyperplane,
as seen in Figure 2.7. This distance is called the margin.

O
v O yi =1
2
%,
O O
hyperplane
yi=-1 w /M
O O optimal hyperplane

Figure 2.7: The optimal separating hyperplane.

The maximum margin is achieved by choosing the hyperplane with the smallest norm
of coefficients. This has the implication that the smaller the value of ||w| the larger
is the value of the margin 7. Recall that it was argued that minimising ||w|| results in
minimising the VC-dimension. Therefore, the optimisation problem which implements
the SRM principle can be stated as

minimise ||w], (2.22a)
subject to yi[(w,x;) +b] > 1, i=1,...,L (2.22b)

However, minimising the norm of w results in minimizing a square root which is
difficult to solve. Since the square root function is a monotonic function, one can
minimise the squared norm and reach the same result. Furthermore, the squared
norm is used in (2.19) which gives a bound on the VC-dimension. Finally, through

28 CHAPTER 2. COMPLEXITY CONTROL

this slight change in the objective function, the optimisation problem becomes a
quadratic programming (QP) problem with convex constraints:

1
minimise 3 wl?, (2.23a)
subject to yi[(w,x;) +b] > 1, i=1,...,L (2.23b)

The solution of a QP problem is unique, which is a major advantage over NNs that
have local minima.
A QP problem is solved by finding the saddle point of the Lagrange functional,

L(w,b, o ——||w|| Zal ([(w, x;) — blys — 1), (2.24)

where «; are the Lagrange multipliers. Thus, the Lagrangian has to be minimised
with respect to the primal variables w and b and maximized with respect to the dual
variables a; > 0. The solution (w*,b*, a*) should satisfy the Kiithn-Tucker conditions

oL (W*, b",a*)

- 2.2
% 0 (2.25a)
and W =0. (2.25b)

Using the conditions in (2.25), the primal variables w and b can be expressed in terms
of the dual variables o

£
D aiyi=0 (2.26)
i=1
and w= Z QY X (2.27)

When substituted into (2.24), the resulting Wolf dual of the optimisation problem is
given by

£ £

. 1
maximise Zai ~3 Zaiajyiyj (Xi, X0, (2.28a)
i=1 1,8
subject to Zajyi =0, (2.28Db)
>0, i=1,...,L (2.28¢)
Let a* = (af,...,a;) be the solution of the QP problem above. The vectors for

which the corresponding Lagrange multipliers are positive are called support vectors.
The values of the Lagrange multipliers assign weights to the corresponding vectors.
These vectors and their weights are then used to define the decision rule or model.
Therefore the learning machine in (2.28) is called the support vector machine.

2.3. SUPPORT VECTOR MACHINES 29

The decision rule for the classification problem is then expressed in terms of the
set of support vectors SV as

f(%) = sgn (> viof (xi, %) - b*) ; (2.29)
ieSv
where b* is the constant threshold or bias determined by
* 1 * * * *
b= [wh,xp) + (w',x4,)] (2.30)

with X any support vector belonging the class with output data 1, and x*; any
support vector belonging to the class with output data —1.

In Figure 2.7 the support vectors are the vectors on the margin, indicated with
black markers. The support vectors are the vectors that lie on the margin and they
typically represent the input data that are the most difficult to classify.

The type of optimal separating hyperplane described here, is a special case of
a class of separating hyperplanes called the A-margin separating hyperplanes. It is
proven that the set of A-margin separating hyperplanes has a bounded VC-dimension
and that the classification error is bounded [108].

Non-separable case

Recall that it was assumed that the learning data set was indeed a separable set.
Suppose that the data set is not separable. There are no hyperplanes that can separate
the data set without error and no maximal margin can be constructed as seen in Figure
2.8. The slack variables &; are introduced to penalise for those vectors lying within
the margin. The value of a slack variable is the distance of the corresponding vector
to the margin.

Since no hyperplane can be constructed without error, the optimisation problem
is one minimizing the training errors:

£
minimise F,(§) = Z &7, (2.31a)
i=1
subject to y; [(w,x;) +b] > 1-¢, i=1,...,4, (2.31b)
and using the structure
Sp = {<w,x> +b:wl® < ck} . (2.31¢)

The minimisation of (2.31) with ¢ = 1 constructs a soft margin hyperplane. The
optimisation problem stated in (2.31) is convex and can be expressed as a quadratic
optimisation problem [106]. In the QP formulation the empirical risk (the errors) and
the norm of the weights are minimised simultaneously, i.e.

¢
. 1 2
minimise 5 lw|”+C 2; &, (2.32a)
1=
subject to y;[(w,x;) +b] >1-¢&, i=1,...,4, (2.32b)

&>0, i=1,...,L (2.32¢)

30 CHAPTER 2. COMPLEXITY CONTROL

Figure 2.8: The Optimal Hyperplane for the non-separable case.

The parameter C affects the trade-off between complexity and the proportion of non-
separable samples and is often referred to as the regularisation parameter.

Again by introducing Lagrange multipliers, finding the saddle point of the La-
grangian and writing the Wolf Dual problem, the QP problem to solve becomes,

4

. 1
maximise ;ai — 5% YiY; (x4, %X5), (2.33a)
¢
subject to Z a;y; =0, (2.33b)
=1
0<a; <C, i=1,...,L (2.33c)

Let SV be the set of the support vectors, then the resulting decision rule for the
non-separable classification problem is expressed in terms of the support vectors as

f(%) = sgn (> viof (xi, %) - b*) ; (2.34)
icSV
where b* is the constant threshold or bias determined by
* 1 * * * *
b= [wh,xp) + (w',x4,)] (2.35)

with x7 any support vector belonging to the class with output data 1 and x*; any
support vector belonging to the class with output data —1.

2.3. SUPPORT VECTOR MACHINES 31

Finally, for SVM for classification to take place, the linear inner product (x;,x;)
in (2.33) (and (2.28)) is replaced by a (nonlinear) kernel function

K(xi, %) = (¢(x:), p(x;)) -

The resulting decision rule for then becomes

f(%) = sgn (2 yiaf K (x5, %) - b*) . (2.36)

icSV

The optimisation problems in (2.28) and (2.33) are solved by using standard optimi-
sation routines. These routines typically define the optimisation problem in terms of
the Hessian matrix and separate matrices for the equality and inequality constraints,
as shown below.
Define 1,, as an n x 1 vector of ones and 0,, an n x 1 vector of zeros. Let H be an
£ x £ matrix such that
Hij = yiy;i K (xi,%5),

then the SVM for classification in matrix notation is to minimise

%aTHa — 17« (2.37)
subject to the equality constraint
yla=0 (2.38)
and the inequality constraints
0, <a<Cl,. (2.39)

The algorithmic pseudo code for the SVM for classification can be found in Algorithm
A.

Algorithm A. SVM for Classification

Step 1: Select the learning data (x;,y;),7 = 1,...,¥£, kernel function K
and C.

Step 2: Construct the matrices for the QP problem.

Step 3: Solve (2.37) subject to (2.38) and (2.39) for .
Step 4: Calculate the bias b using (2.35).

Step 5: Calculate |w|’* = a”He.

Step 6: Calculate size of margin y = H27H

Step 7: Identify support vectors as {x;|e; > 0,i=1,...,£}.

Step 8: Construct the index set SV of the support vectors.

32 CHAPTER 2. COMPLEXITY CONTROL

Step 9: Construct the SVM Classification model using the determined pa-
rameters

fcx,b(j\() = sgn (Z yiaiK(xi,)A() + b) .

icSV

2.3.2 Regression case

The SVM method can also be used to solve regression estimation problems. Recall
that the SVM method implements the SRM principle by keeping the empirical risk
fixed or at a certain level whilst minimising the VC-dimension through the norm of
the weights. However, in certain cases (like the non-separable classification) it is not
possible to keep the empirical risk fixed. The errors are then penalised by adding
slack variables and the optimisation problem then minimises the norm of the weights
and the empirical error simultaneously [106],[11].

To measure the error of approximation, a loss function is used. Recall that different
loss functions result in different models. The classic squared loss (Le norm) is used in
least squares methods, and the absolute loss (L; norm) is used in the least modulus
methods [11],[88]. Robust regression uses Huber’s loss function which is related to the
absolute loss function [27]. The SVM for regression, however uses the the e-insensitive
loss function [106]

Lf (x,y, f (x)) = ly — f (%) | = max (0, |y — f (x) [—), (2.40)
where f is a real-valued function as defined in (2.17) and the learning data

(x17y1)7 ceey (xlayl)axi S Rnayl eR. (241)

Through the introduction of the e-insensitivity, the value of the empirical risk during
training is kept fixed at an acceptable level, as is required by the second approach of
implementing the SRM principle. By minimising the norm of the weights the Support
Vector Machine for the regression can be formulated. However, as in the non-separable
classification case, not all errors can be fixed absolutely to €. Therefore, during the
optimisation any error beyond the e-level will be penalised as seen in Figure 2.9. There
is also another reason for using the e-insensitive loss function: sparse representation
in terms for support vectors. This issue is readdressed later in the chapter.

2.3. SUPPORT VECTOR MACHINES 33

FLH
|
|
|
|
A—e +€
Figure 2.9: The e-insensitive zone.
Implicit complexity control
The SVM for regression has to find w and b that
WA
minimise F(§,6%) = - ZE’ +&), (2.42a)
¢ i=1
subject to
yi — [(W,x;) +b] <e+ &, i=1,...,4 (2.42Db)
[(w,x;) +b] —y; <e+ &, i=1,...,4, (2.42¢)
&, >0, i=1,...,¢, (2.42d)
and using the structure
Sp = {<w,x> +b:w|? < ck}. (2.42¢)

The optimisation problem in (2.42) is convex and can be written as the following QP
problem [106],[11].

oy O .
minimise §||w|| t5 ;(& +&)s (2.43a)
subject to ((w,x;) +b) —y; <e+ &, i=1,...,4, (2.43Db)
yi — ((w,x;) +b) <e+ &, i=1,...,¢ (2.43c)

&, >0, i=1,...,4 (2.43d)

34 CHAPTER 2. COMPLEXITY CONTROL

Again through introducing Lagrange multipliers, the Lagrange functional can be writ-
ten,

* 2 c :
Lw,b,a,a”) = 72 &G+&)
l =1
+) o ((w,xi) +b—yi —e— &)
i=1
+Za —(w,x;) —b—€e—&)
¢
=Y (& +nfg). (2.44)
=1

Finding the saddle point of the Lagrangian with respect to the primal variables w, b,
£ and &%, leads to

¢
wW = Z (a;k — Oli) X;, (245)
i=1
¢
Z o —a; =0, (2.46)
i=1
ai:%—m, iZl,...,Z, (2.47)
and af:%—nf, i=1,...,L (2.48)

Making use of the fact that a; > 0 and #; > 0, (2.47) can be written as

i=1,...,L (2.49)

Similarly for af > 0 and 5} > 0, (2.48) is written as

, i=1,...,L (2.50)

~| Q)

Substituting the equations in (2.45)-(2.48) into (2.44), we obtain the Wolf Dual pro-

2.3. SUPPORT VECTOR MACHINES 35

blem
1L
maximise — 2 Z (af — ;) (a; — aj) (Xs, X5
%,j=1
¢ ¢
+ Z yi (af —ay) — ez (af + o), (2.51a)
i=1 =1
¢
subject to Z (af — ;) =0, (2.51b)
i=1
0<aya; < 7 i=1,...,4 (2.51c)

Finally, for support vector regression to take place, the linear inner product (x;,x;) in
(2.51) has to be replaced by a (nonlinear) kernel function K(x;,x;) = (¢(x;), d(x;)).
The best approximating function or model has then the form

£
Far—app B) =Y (af — ;) K(x;,%) + b, (2.52)
i=1
where b is the bias determined by
£
|S| Z Yi — Z aj —a;)K(x;,%x;) —e sgn(aj —a;) |, (2.53)

€S j=1

where S contains the indexes of the Lagrange multipliers for which 0 < |af —ay] <
C/£ holds.

In SVM for regression the parameter e controls the complexity implicitly, whereas
the parameter C' is used to control the trade-off between the complexity and the error
terms. An estimation method for determining a suitable value for C, is derived and
discussed in Chapter 4.

The optimisation problem in (2.51) is solved by using standard optimisation rou-
tines that typically define the QP problem in terms of the Hessian matrix and separate
matrices for the equality and inequality constraint, as shown below.

The Hessian matrix H is now an 2/ x 2¢ matrix such that

m- (ke ke

*
For 8 = [a] the SVM for regression in matrix notation is then to minimise
«a

T
—ﬂ Hp + y] B (2.55)

[61 +

subject to the equality constraint

[_1‘] Tﬁ =0 (2.56)

36 CHAPTER 2. COMPLEXITY CONTROL

and the inequality constraints
c
02 <B < 7121& (2.57)

The algorithmic pseudo code of the e-SVM for regression can be found in Algorithm
B.

Algorithm B. ¢-SVM for regression

Step 1: Select the learning data (x;,¥y;),? = 1,..., ¥, kernel function K, C
and epsilon.

Step 2: Construct matrices for the QP problem.

Step 3: Solve (2.55) subject to (2.56) and (2.57) for 3.

Step 4: Calculate a* = [B,...,8,) and @ = [By 1,...,Ba]-

Step 5: Calculate the bias b using (2.53).

Step 6: Calculate |w|” = (o* — a)” H (a* —).

Step 7: Identify support vectors as {x;| (o} — ;) #0,i=1,...,¢}.
Step 8: Construct the index set SV of the support vectors.

Step 9: Setw=(a* —qa) .

Step 10: Construct the SVM regression model using the determined pa-
rameters

fop(®) = D wK(x;,%)+b.

icSV

Explicit complexity control

One of the main drawbacks of the e-insensitive SVM for regression is that one has to
choose the value of € a priori. The value of ¢ defines the size of the insensitive zone
which indicates what the desired accuracy of the approximation is. Often one does
not want to be committed to a fixed value of €, but to something which is as accurate
as possible.

2.3. SUPPORT VECTOR MACHINES 37

This is achieved by introducing a parameter v which scales the value of € [89],[78].
Consider the loss functional

Z ly: — f(x3)]

= Zmax (lys = £x0)| —€)

¢ [i—fxi)—¢) + yi—f(xi) =€
ZZ f D=y oy flx) < —e

otherwise

If € is unknown, but we know that the ratio v scales the value of e,

oL &+tve : yi—f(x) >e
Le’yzzz & +ve @ yi—f(x) < —€
=1 | pe : otherwise
1L
ZZ&+§+ZV€
1
:Ve-l-ZZ(fi‘i‘f;)
i=1

Replacing the original loss functional with the one above, the so-called »-SVM for
regression is obtained. The QP problem for the v-SVM is

£
minimise = ||W|| +C <V€+ 7 ; & +&)) (2.58a)
subject to ({(w,x;) +b) —y; <e+&;, i=1,...,4, (2.58Db)
yi — ((w,x;) +b) <e+ &, i=1,...,¢ (2.58¢)
£>0, €20, >0, i=1,...,0 (2.584)

The resulting Wolf Dual problem then can be written as

¢
. 1
maximise — 5”221 a —) (a —a] xz,x] +Zyz a - a;), (2.59a)
¢
subject to Z (af —a;) =0, (2.59b)
i=1
¢
(e +a)<C v, (2.59¢)
i=1
0<al” g%, i=1,...,0L (2.59d)

38 CHAPTER 2. COMPLEXITY CONTROL

The parameter v replaces the € and is the ratio that varies between 0 and 1. Using v
makes it much easier to find the best value for v than for an e that is only bounded
from below by 0.

For support vector regression to take place, the linear inner product (x;,x;) in
(2.59) has to be replaced by a (nonlinear) kernel function
K(x;,x;) = (¢(x;), d(x;)). The best approximating function or model has the same
form as for the e-SVM,

¢
Jar—ayp (Z (of — ;) K(x;,%) + b, (2.60)
=1

where b is the bias determined by (2.53).
We now write the optimisation problem in (2.59) in matrix notation. Minimise

Lorag 4 |Y Tﬁ (2.61)
2 y '

subject to the equality constraint

[_1‘] Tﬁ =0 (2.62)

and the inequality constraints

[Oél] : [(bgTﬂ] : [(CCM-);M]‘ (209

The algorithmic pseudo code of the ¥-SVM for regression can be found in Algorithm
C.

Algorithm C. v-SVM for Regression

Step 1: Select the learning data (x;,¥y;),? = 1,..., ¥, kernel function K, C
and v.

Step 2: Construct the matrices for the QP problem.
Step 3: Solve (2.61) subject to (2.62) and (2.63) for 3.
Step 4: Steps 4-10 of Algorithm B.

Recall that the reason for using the e-insensitive is two-fold. We already explained the
one reason, namely that the second approach of implementation of the SRM principle
requires the error to be fixed at a certain level. That is achieved by using the e-
insensitive zone. The second reason, namely that it provides sparse representation,
we did not explain yet. Now consider the SVM regression model given by

fup®) = D wiK(x;, %)+, (2.64)
€SV

2.4. CHOICE OF COMPLEXITY PARAMETERS 39

where w and b are the weights and bias determined by the SVM using the kernel
function K and input data x, and SV is the index set of the support vectors. If
|SV| < £, it is clear that the number of terms in a SVM model is fewer than the
number of terms that would have been used in a model built on the basis of one of
the traditional loss functions®.

2.4 Choice of complexity parameters

The complexity can be controlled implicitly or explicitly. The implicit method controls
the number of support vectors by controlling the acceptable error level through e.
Using v, the ratio of support vectors can be controlled explicitly.

Whether the implicit or explicit complexity control is used, the complexity pa-
rameter has to be set a priori. This is only necessary in the case of regression. By
definition, the complexity is automatically minimised in support vector classification
[106].

The choice of the complexity parameter depends on various factors. In the follow-
ing paragraphs the effect of changing the parameter, what influences the parameter
and how to determine the parameter will be discussed.

2.4.1 Size of the insensitive zone (¢)

Through the value € the size of an insensitive zone around the hyperplane is controlled.
We assume that any approximation error smaller than € is due to noise and accept it
[88],[91]. Furthermore, the value of e should reflect the noise variance in the learning
data[11]. Therefore one can see this insensitive zone as a sort of acceptable noise level.
During the learning phase, these approximation errors will be ignored and therefore
the method is said to be insensitive to errors inside this zone.

All approximation errors outside this zone are not due to noise and will be taken
into account during optimisation. The vectors (data points) that have approximation
errors outside the insensitive zone, are the most difficult to predict. These vectors
contain most of the information and are important. Therefore, the support vectors
in the regression case are those vectors that lie outside the insensitive zone. By
decreasing the value of €, the number of support vectors is increased since more and
more vectors lie outside the insensitive zone. Throughout the thesis the following
example (or variations of it) will be used to illustrate ideas and results.

Example 1. (Sin function with added noise.)

Step 1: Generate 100 data points z; using a uniform distribution over [0, 1].
Step 2: Generate 100 random noise values n; using N(0,0.07).
Step 3: The output values y; were determined as y; = sin(27w ;)% + ;.

In Figure 2.10 the effect of € is shown using Example 1 and the parameters C' = 1000
and a radial basis function (RBF) kernel with kernel parameter ¢ = 0.25. One can
see that for increasing values of €, the size of the e-insensitive zone increases such

5Tere |A| is the cardinality of the set A.

40 CHAPTER 2. COMPLEXITY CONTROL

that fewer data points lie outside the zone resulting in fewer support vectors chosen.
Furthermore, one can see that for this example it is not necessary to use a large
number of support vectors in order to achieve good predictability. Since the number
of support vectors, which determines the complexity of the resulting model, is not
known beforehand, but is controlled through €, the complexity is said to be controlled
implicitly.

(a) € =0 (100% sv's) (b) € =0.04 (69% sv's)

12

1.2

*

> >
-0.2 - Data P
0 0.2 0.4 0.6 —— Prediction 0 0.2 0.4 0.6 0.8 1
X * sv's X
Insensitive zone
(c) € =0.08 (24% sv's) (d) £=0.12 (7% sv’s)
1.2
1
0.8
0.6
>
0.4
0.2} /|
0 e
-0.2
0 0.2 0.4 0.6 0.8 1
X X

Figure 2.10: Increasing values of € lead to a reduction in the number of support vectors
used by the model.

The optimal value of € can be found by inspecting various levels of complexity and
selecting the parameter for which the resulting model has the best performance with
respect to generalisation error as well as approximation error [39].

The algorithmic pseudo code for the optimisation of € is given in Algorithm D.

Algorithm D. Optimisation of €

Step 1: Select the learning data (x;,¥y;),? = 1,..., ¥, kernel function K, C
and iteration parameter p = [e_start, e_end, it_num].

Step 2: Construct a vector £ consisting of it_num values linearly dis-
tributed from e_start to e_end.

2.4. CHOICE OF COMPLEXITY PARAMETERS 41

Step 3: For k=1 to it_num
run Algorithm B using £y,
set wp =w
set by = b
set SV, = {SV}
construct the model fi(%) = wi K (x,%) + by,
Calculate the predictions py;, = fr(X).
end.

Step 4: Find the optimal model f* using Vapnik’s measure (See Chapter
9).

Step 5: Return optimal € = &*.

2.4.2 Ratio of support vectors (v)

Through the ratio v the desired ratio of support vectors to be used is chosen a priori.
The size of the e-insensitive zone is determined automatically [73],[88],[10],[89].

Furthermore, if ¥ > 1, then € must be 0, since it does not pay to increase e.
This can be seen from (2.58a) where using a value v > 1 makes the slack variables
become less important. Another way to see this, is to note that in (2.58¢) a v > 1
implies (2.58d) since, if all ag*) hit the upper boundary C/£ and we take into account
that a;af = 0 for all 4, the sum over ¢ = 1,...,£ of the a’s has a suppremum of
£-(C/€) = C. Thus, the constraint in (2.58d) is redundant for all values of ¥ > 1. In
fact all values of v > 1 are equivalent. Therefore, the values of v are between 0 and
1.

For v < 1, the value of € are usually larger than zero. In noise free data, which
can be approximated without error with a low complexity model, € can still be found
to be zero. Of course, the case of € = 0 is not very interesting since we loose the
sparse representation character of SVMs and this is equivalent to the plain L;-loss
regression. For € > 0, the following statements hold (for the proof the reader is
referred to [73],[88)]):

1. v is an upper bound on the fraction of errors.
2. v is a lower bound on the fraction of support vectors.

3. Suppose the data in S, were generated ii.d. from a distribution P(x,y) =
P(x)P(y|x) with P(y|x) continuous. With probability 1, asymptotically, v
equals both the fraction of support vectors and the fraction of errors.

In Figure 2.11 the effect of v is shown using Example 1 and parameter set to C = 1000
and a RBF kernel with kernel parameter o = 0.25. One can see that for increasing
values of v, the number of support vectors decreases as the size of the e-insensitive
zone increases. Since the value of v gives an indication of the ratio of support vectors,
the complexity is said to be controlled explicitly. It is difficult to say what a good
choice for v is. For a data set with moderate noise level and few outliers, a reasonable

42 CHAPTER 2. COMPLEXITY CONTROL

(@) v=0.05(11% sv's,e =0.1) (b) v =0.4 (45% sv's, € = 0.05)

12

1.2

¥

0.8
0.6
0.4
0.2

-0.2 - Data .
0 0.2 0.4 0.6 —— Prediction 0 0.2 0.4 0.6 0.8 1

X * sv's X
Insensitive zone
(c)v=0.8(86% sv's,e = 0.01) (d) v=1(100% sv's, € = 0)
1.2

1
0.8
0.6
>
0.4
0.2

0

-0.2
0

Figure 2.11: Increasing values of v lead to decreasing values of €. Consequently the
number of support vectors used by the model is increased.

value lies in the region of 0.5 [55]. To find the optimal value of v, various levels of
complexity have to be inspected and the parameter for which the resulting model has
the best performance with respect to generalisation error as well as approximation
error is selected.

The algorithmic pseudo code for the optimisation of v is very similar to Algorithm
D where v is used in stead of €. It only differs in Step 3 where Algorithm B is replaced
by Algorithm C.

2.5 Conclusion
Let us state the original design requirement again:

The inferential sensor should be able to use the optimal complexity for
the given data set as well as control it.

In order to achieve this design requirement, some important results from SLT were
discussed. A simple way to summarise these results is as follows, where the italic

2.5. CONCLUSION 43

text corresponds to the structure below. The classical ERM Remp(a) finds the best
approximating function. Learning machines that implement the ERM therefore have
control over the approzimation error. However, due the consistency of the ERM
principle, the learning machines can only be applied to large sample sizes. In order
to learn from a small sample size data set, the learning machine is required to have
control over the complexity of the model. The control then enables the learning
machine to select the model with the best structure/capacity for the given sample
size. The term Remp(c) is concerned with the learning ability of the learning machine
and is used to assess the quality of the approzimation. The term ®(£/h) is concerned
with the complexity of the model constructed by the learning machine and is used
to assess the quality of generalisation. Therefore, the minimisation of the combined
terms is the SRM principle. These important aspects are used in constructing the
SRM principle, which can be summarised as follows.

min R(a) = Remp(a) + ®(4/h)
\ fr
Best approximating function Best structure/capacity
\ fr
Control approximation error Control complexity(h)
\ fr
Large sample sizes Small sample sizes(#)
Learning Ability Complexity of Model
\ fr
Quality of Approximation <= Quality of Generalisation

One implementation of the SRM principle is SVMs, which gives the direct control
over the complexity of the resulting model. Therefore, in the context of adaptive infe-
rential sensor development, we conclude that the SVM method is preferable to other
methods since it is the only learning machine that has the desirable characteristics
required. These characteristics being the learning method’s ability to minimise the
complexity of the model, the ability to control the complexity of the model and that
the learning method works well with small sample sized data sets. The fact that the
SVM model is a sparse representation of the learning data is a bonus. Furthermore,
the characteristics of support vectors can possibly be used to solve a number of other
design requirements.

On the practical side, algorithmic pseudo codes for the SVM for classification,
e-SVM for regression and v-SVM for regression were given. We further gave some
practical insights into the influence of the complexity parameters € and v as well as how
to select these parameters. Finally we discussed the optimisation of the complexity
parameters and gave algorithmic pseudo codes as well.

44

CHAPTER 2. COMPLEXITY CONTROL

Chapter 3

High-dimensional Data and
Spaces

3.1 Introduction

The number of variables measured in a process plant has increased dramatically as
computer software made obtaining and handling the thousands of measurements faster
and easier. Furthermore, the industry needs to analyse their processes in order to
understand exactly what influenced the quality of the production. The result is that
many new hardware sensors were developed and implemented to measure various
process variables. Currently it is not rare for analysts to receive data sets with
hundreds of variables [39]. Therefore, one part of the second design requirement
requires inferential sensors to be able to use high-dimensional data sets.

Since most of the problems encountered in real-life are nonlinear, linear learning
machines map the input data into a higher dimensional feature space where the lear-
ning capacity of the linear learning machine is increased [106],[11]. However, as the
number of dimensions grows, the dimensionality of the feature space can become
computationally unmanageable. Also, with an increasing number of dimensions the
number of data samples needed for a sufficiently high sampling density increases ex-
ponentially [11]. High sampling density is necessary to ensure that data covers the
modelling space well. The phenomenon that the learning machine’s computational
and predictive performance can degrade as the number of input dimensions increases,
is often referred to as the curse of dimensionality [10].

A common approach to find a way around this problem, is to limit the number of
input dimensions to a smaller set of relevant dimensions. These relevant dimensions
still need to consist the essential information contained by the original set. A well-
known statistical method for dimensionality reduction is Principle Component Ana-
lysis (PCA) [52]. Other widely used methods in industry for dimensionality reduction
are NNs [47] and GP [41]. However, even after such steps were taken industrial data
sets may still have too many dimensions for classical learning machines. Therefore,
the second part of the design requirement requires the inferential sensor to overcome

45

46 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

the curse of dimensionality.

In the first section of this chapter we briefly explain some important issues in-
volving the curse of dimensionality. The second section deals with kernel functions.
Their use in SVMs results in an implicit and not an explicit mapping of the learning
data onto a higher dimensional space. Two different types of kernels, Radial Basis
Function (RBF) kernels and polynomial kernels, are discussed in the third section.
Finally, we explain in the fourth section how to choose of the type of kernel and
determine the parameters used by the kernel function.

3.2 Curse of dimensionality

The goal of the learning machine is to estimate a function from a finite number of
training data. In Chapter 2 we have seen that for good generalisation performance,
the approximating function should be smooth enough, i.e. a small norm in coeffi-
cients. The constraints imposed on the smoothness of the function define the possible
behaviour of the function in local neighbourhoods of the input space. It is obvious
that the accuracy of the function estimation will depend on whether or not there are
enough samples within the neighbourhood. In high-dimensional input spaces, it is
difficult to collect enough samples for an adequate sampling density. The result is
that the learning machine often does not have enough information available in order
to learn and predict well.

Linear learning machines also need to map the input data into a higher dimensional
feature space where the learning capacity of the learning machine is increased [106]. As
the number of input dimensions increases, the dimensionality of the feature space can
become immense and even infinite. The problem could then become computationally
unmanageable[11].

The degradation in the learning machine’s computational and predictive perfor-
mances when the number of input dimensions increases, given a fixed number of
samples, is called the curse of dimensionality [11], [10],[106].

Curse of dimensionality with respect to predictive performance

The degradation of the predictive performance of a learning machine is mainly due
to the geometry of high-dimensional space. The following properties show how for
example high-dimensional distributions contribute to the curse of dimensionality [11].

Property 1: Sampling density. For increasing dimensions, the number of data points
needed to retain the same sampling density, increases exponentially. For exam-
ple, suppose a sample of £ data points in R! is considered as a dense sample.
Then, in order to obtain the same sampling density in R™, the number of data
points needed is £".

Property 2: Large neighbourhoods. For increasing dimensions, a larger radius is
needed to enclose the same fraction of samples. For example, consider data
points taken from a n-dimensional uniform distribution over the unit hypercube.
In R, the hypercube is a line of length 1; in R? it is a one-by-one square;

3.2. CURSE OF DIMENSIONALITY 47

in R? it is a cube with edge lengths equal to one; and so fourth. Suppose
that another smaller hypercube exists within the unit hypercube such that it
encloses a predefined fraction p of the data points in the unit hypercube. Let us
denote this smaller hypercube with Q™. The edge length of Q" for increasing
dimensions is determined by .
en(p) = pi.

Suppose it is required that Q" encloses 10% of the data points of the unit
hypercube. The edge length for Q™ in R is then 0.1 and in R? it is 0.32. In
R? the edge length of Q2 is 0.46. This can be seen in Figure 3.1. Continuing
in this fashion, enclosing 10% of the data points in the unit hypercube in R'°
requires that @'° has an edge length of 0.8. Thus, for high-dimensional spaces
a very large part of the input space needs to be sampled in order to obtain only
a small fraction of the data points.

1
&
S

\

.___\ \
\ \

|_|—
e(0.1) = 0.1 €2(0.1) = 0.32 es(0.1) = 0.46

Figure 3.1: Increasing dimensions requires larger edge lengths for @) to enclose 10%
of data points in the unit hypercube.

Property 3: Distance to the edge of the space. For high-dimensional spaces, almost
every point is closer to the edge of the space than to another data point. Con-
sider again the n-dimensional uniform distribution over the unit hypercube.
The distance of any data point from the edge of the unit hypercube is at most
0.5. The maximum distance is achieved by the data point exactly at the centre
of the unit hypercube, which is also the centre of the distribution. Now let us
define for a sample of £ data points the expected distance, Lo,, between data

points as
1/1\~

In R% D(10,1000) ~ 0.5 and D(10,10000) ~ 0.4. These averages are very
close to the maximum distance from any data point in the unit hypercube to
the edge of the unit hypercube. This means that already in a ten-dimensional

48 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

space, most data points will be closer to the edge of the space than to another
point.

Property 4: Distance from the centre of the space. In high-dimensional spaces, al-
most every data point looks like an outlier of the training data. Consider again
the example of n-dimensional uniform distributions over unit hypercubes. Let
us denote the unit hypercube in R” with (7. The number of corners for Q7 is
2", In Figure 3.1 one can see that Q% has 4 corners and Q? has 8 corners. The
euclidian distance from the centre of the unit hypercube to each corner is

Recall from Property (3) that the distance from the centre to the edge is 0.5.
Now, using polar coordinates, the unit hypercubes can be visualised as seen
in Figure 3.2. The number of corners is linearly distributed over 27 and the
radius indicates the distance from the centre of @} to the corners and edges. As
the number of dimensions increases, the distance from the centre to the corners
grows longer relative to the size of the central spherical part of the distribution
in Figure 3.2. For a data point at a corner (at the tip of a spike) the other
data points would appear far away and concentrated in the sphere around the
centre. Therefore, with respect to the other data points in the sphere (that is
being near the centre of distribution), the data point appears to be an outlier.

Unit hypercube Q2 Unit hypercube Q3 Unit hypercube Q4
1 1 1

Figure 3.2: Unit hypercubes visualised using polar coordinates. Conceptually, a high-
dimensional hypercube therefore looks like a star.

The properties 1 and 2 explain why it is difficult to make local estimates of high-
dimensional data. The immense number of samples required for meaningful estimation
in high-dimensional spaces, can seldom be obtained. The properties 3 and 4 indicate
that in high-dimensional spaces predictions made by a learning machine will often
result in an extrapolation. Since almost every point is closer to the edge than to
another point, extrapolation becomes the rule rather than the exception.

3.2. CURSE OF DIMENSIONALITY 49

Curse of dimensionality with respect to computational perfor-
mance

The second part of the curse of dimensionality is the computational difficulties en-
countered by the learning machine in high-dimensional spaces. Recall that linear
learning machines map the input data into a feature space through nonlinear trans-
formations. For example, let ¢;(x),j = 1,...,m denote a set of nonlinear transforms
corresponding to polynomial terms of the components of x up to a certain order (in-
cluding the interaction terms). In R%, the mapping of input data x = (z;,z2) using
third-order polynomials, would result in a 16-dimensional feature space consisting of
the following features,

¢1(x1,22) =1

$o(z1,22) = 21 ¢3(z1,72) = 77 ¢a(z1,22) = 23
@5 (21, 22) = 2 b6 (T1,22) = 73 o7 (z1,22) = 75
Ps(z1,22) = T122 ¢o(z1,22) = 2722 $ro0(21,22) = @3 wo
P11 ($1,$2) = 1§ ¢12($1,$2) = ﬁ 3 ¢13($1,$2) = ﬁ 3
b1a(w1,22) = 173 ¢15(z1,22) = T2 73 br6(1, 2) = 2323

In this higher dimensional feature space, the linear learning machine constructs an
approximating function resulting in a third-order polynomial function in the input
space. It is also clear from this example that for increasing dimensions in the input
space, the dimensionality of the feature space can become very large. For learning
machines that require the explicit calculation of the transformations in the feature
space, for example D(x) = Z;nzl w;¢;(x), the task could become computationally
unmanageable since the summation depends on the dimensionality of the feature
space. Here the bias is omitted because the constant basis function ¢ (x) = 1 is
included in the feature space.

Dimensionality reduction

The problems encountered with high-dimensional data sets lead to the whole field of
dimensionality reduction. Dimensionality reduction is in principle an unsupervised
learning problem [39] and is typically performed using PCA [52] and NNs[47]. In
inferential sensor development, dimensionality reduction is seen as a preprocessing
step to the main learning problem of function estimation [33],[41].

In practice NNs and GPs are often used to perform a sensitivity analysis on the
various dimensions in the training data [41]. For each dimension a weight is deter-
mined that gives an indication of the relative importance of the dimension. The
dimensions that have the highest importance are then selected as the reduced set of
dimensions.

Often in the quest to reduce the number of dimensions, the learning method
is left with learning data that lack a lot of information. The reduced set should
account for a high percentage of the variability in the data. Therefore, performing
dimensionality reduction is a balancing act of the number of dimensions against how

50 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

much information is lost. The more complex and nonlinear a problem becomes, the
more difficult it is to reduce the number of dimensions to a manageable set.
However, sometimes even if dimensionality reduction was performed, the problem
may still have too many dimensions for classical methods. Therefore, it is important
that we look for methods that try to alleviate the effects of the curse of dimensionality.

3.3 Kernel functions

In many learning machines the learning data are mapped (nonlinearly) into a higher
dimensional feature space where the computational power of the linear learning ma-
chine is increased [106]. The mathematics of the SVM given in Chapter 2 expresses
these transformations as linear inner products of the input data. In order to make the
mapping nonlinear, we make use of an inner product kernel which has the following
form

K(x,%) =) ¢i(x)¢;(%), (3.1)

for a given set of basis functions ¢;(x).
The inner product kernel in a Hilbert Space has the following general form

(2,2) = K(x,%), (3.2)

where z is the image in the feature space of the vector x in the input space. According
to Hilbert-Schmidt theory, the convolution of the inner product kernel, K (x,%), can
be any symmetric function that satisfies Mercer’s conditions [106]:

//K(x, Xx)g(x)g(x)dxdx >0, forall g+#0, /92 (x)dx < 0. (3.3)

For finite dimensional input spaces, the conditions (3.3) states that K(x,%) is an
admissible kernel function if it produces a kernel matrix that is symmetric and positive
semi-definite.

The SVM for regression method using a kernel function and the e-insensitive loss
function is then formulated as [106],

¢ ¢
maximise Z yi (af —oy) —¢ Z (af + ;)
i=1 i=1
1L
-3 Z (af —) (a; — o) K(xi,%;5), (3.4a)
ij=1
¢
subject to Z (af —a;) =0, (3.4b)
i=1

C
0 <aj,05 < 7

2

. i=1,...,0 (3.4¢)

3.4. TYPES OF KERNELS 51

The approximating function is given in terms of the weights, the kernel and the bias,
according

f&) =Y (0] — a)K (x;,%) +b. (3.5)

icSV

Using the kernel functions has two major advantages. In 1992 it was observed by
Boser et al. that one does not need to consider the feature space in explicit form
[4]. That is to determine all the features of x and % in the feature space and then
determine the inner product (¢(x),¢(x)). Through the use of the kernel function
K (x,%) the inner product in the feature space is determined directly as a function of
the input data in the input space. Furthermore, the SVM model in (3.5) only uses
the support vectors in the feature space. Thus, using the kernel function one only has
to calculate the inner products between support vectors and the vectors in the input
space [4],[75]. This solves the technical difficulties encountered by learning machines
in high-dimensional spaces [10],[11],[39] and consequently the curse of dimensionality
with respect to the computational performance is overcome.

3.4 Types of kernels

Many of the characteristics of the model in (3.5) are determined by the type of kernel
function being used [88]. Which kernel function to use depends on many factors
such as the type of problem that is being solved, the unknown underlying functional
dependency, the type and number of data points, the suitability for online and off-
line learning, the computational resources and experience or expertise available for
a specific kernel [39]. Some kernel functions are better equipped to solve certain
problems than others. For example, if a problem is highly nonlinear in the input
space, one should use a kernel function that can cope with that. One can use a simple
inner product kernel which produces a linear mapping or more complicated kernels
such as G-spline kernels and Fourier Transform kernels.

Recall that in order to guarantee that the kernel function has the expansion in
(3.1), it must satisfy Mercer’s conditions as stated in (3.3). These conditions are use
to build various types of kernels. Since in practice we will only use finite dimensional
learning data, an admissible kernel function must result in a symmetric, positive
semi-definite matrix. From Hilbert-Schmidt theory, we also know that inner products
define metrics or distance measures in inner product spaces [42]. Different distance
measures result in different types of kernels. Numerous possibilities of kernels exist
and it is often difficult to explain their individual characteristics. However, there are
two main types of kernels, namely local and global kernels [86]. In local kernels only
the data that are close or in the proximity of each other have an influence on the
kernel values. In contrast, a global kernel allows data points that are far away from
each other to have an influence on the kernel values as well. For more information on
the characteristics of various kernels see [88].

An example of a typical local kernel is the RBF kernel,

R x — %2
K(X,X) = exp{—%}, (36)

52 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

where the kernel parameter, o, is the width of the radial basis function.
The polynomial kernel, a typical example of a global kernel, is defined as

K (x,%) = [(x,%) +1]4, (3.7)

where the kernel parameter ¢ is the degree of the polynomial to be used.

1
° 0.8
3
s
Z 06
[}
c
]
X 04
[}
o
S

0.2

O

-1

25 T T T T T T T T T

— Degree 1

oL — - Degree 2 N
g — - Degree 3
g - Degree 4 e e -
S 1.5f [~ Degree5 A =T 4
S R
g B e
© ir — = = =5]
S [__--—---= = oo
O] 0_5;“-‘-“—‘-“—‘7“"" ““““ -+ Test Input 4

' i

o I I | . Yo I I o
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
(b) x

Figure 3.3: Examples of (a) a local kernel (RBF) and (b) a global kernel (polynomial).

The behaviour of the two types of kernels is shown in Figure 3.3 where for linearly
distributed data over [—1, 1] the kernel values with respect to a specific test point at
0.2 are determined. In Figure 3.3(a) the local effect of the RBF kernel is shown for
the chosen test input, for different values of the width . One can clearly see that at
some point, the kernel values level off to zero. A local kernel therefore only has an
effect on the data points in the neighbourhood of the test point. In Figure 3.3(b),
the global effect of the polynomial kernel of various degrees can be seen. Consider
the same test data point as used in the case of the local kernel. For each degree of
the polynomial, all data points in the input domain have non-zero kernel values. The
test data point has a global effect on the other data points. This can be explained
by noting that in (3.7) every data point from the set x has an influence on the kernel
value of the test point X, irrespective of its the actual distance from X.

3.4. TYPES OF KERNELS 93

Many different kernel functions can be constructed as long as they satisfy Mercer’s
Conditions in (3.3). Kernel functions can also be constructed from other kernels or
from features. See [10], [88] and [93] for more information. We use in Chapter 5 a
mixture of a RBF kernel and a polynomial kernel.

To visually explain the use of the kernel on the SVM, consider a two-dimensional
data set X over [0,1] x [0,1] of £. A test set X of 25 points is constructed from a grid
[0,1] x [0,1]. Two (£ x 25) kernel matrices are determined using an RBF kernel with
o = 0.2 and a polynomial kernel with ¢ = 2. One column of the kernel matrix then
contains the kernel values of data points in X with respect to one of the test data
points x; € X. Assign to entry i of the column vector the triple (21, Z2, K (x;, x;)).
For each test point the triples are then plotted 3D. In Figure 3.4 the kernel values
of an RBF kernel for each of the 25 test points were plotted. The same was done in
Figure 3.5 using a polynomial kernel.

x=(0,0] x=(0,0.25) x=(00.5) x=(0,0.75) x=(0,1]

¥=(0.25,1

o

Figure 3.4: RBF kernel with ¢ = 0.2.

54 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

%=(0,0) %=(0,0.25) %=(0,0.5)

%=(075

Figure 3.5: Polynomial kernel with degree = 2.

One can see that the behaviour of the RBF kernel in Figure 3.4 is quite different
from that of the polynomial kernel in Figure 3.5. Each column of the kernel matrix
K(X, X) is represented by one of the planes in Figures 3.4 and 3.5. For a data set of
£ samples, the optimisation problem in (3.4) would create £ planes and determine the
weight for each plane. The vector of the predictions of the original £ learning data
points then results in a weighted linear combination of the planes corresponding to
the support vectors,

y= lz wi K (%3, X) | + ble,

icSV

where K (x;, X) is a column vector of length £ and 1, is an (4, 1) vector of ones.

3.5. CHOICE OF KERNEL AND KERNEL PARAMETERS 55

3.5 Choice of kernel and kernel parameters

The type of kernel is the most important choice to be made, since it influences very
important characteristics of the model. These characteristics include interpolation
and extrapolation ability, robustness and scaling. There are many kernels that can
be used. The research has focussed on the RBF kernels and polynomial kernels since
these are the more commonly used and most of the problems encountered can be solved
by either of the two or a mixture of the two. See Chapter 5 for more information on
the mixed kernel approach. Apart from the choice of kernel, the kernel parameter(s)
must also be set or optimised if necessary.

3.5.1 Radial Basis Function kernel

This type of kernel is classified as a local kernel and it gives the SVM model good in-
terpolation properties. The kernel function has the ability to detect local phenomena.
However, the nature of the RBF kernel is such that the resulting model will fail to
extrapolate outside the known input space because the kernel values level off once
unknown domains of the input space are entered. This needs not be a disadvantage
though, for under certain circumstances such a behaviour may be preferable.

In data sets containing a significant number of outliers or regions of low data
density, the characteristic of detecting local phenomena may be problematic. For
example, in Figure 3.6 the behaviour of an RBF kernel model is shown for three data
sets that vary in noise, presence of outliers and data density. For all three data sets
the same SVM parameters were used, namely C = 100,000 and ¢ = 0.1. Figure
3.6(a) shows that the model performs quite well for a moderate noise level. In Figure
3.6(b), however, the RBF kernel picks up on certain local abnormalities and the model
reflects that. Fortunately, the effect is far less than what one would normally expect.
In Figure 3.6(c), on the other hand, the negative effect of varying data density is more
evident.

How much the local phenomena influence the model, is determined by the width

of the bases. Using too small a width will result in a learning machine that tends
to model noise. Using too large a width will result in a learning machine that may
ignore important local behaviour. These effects can be seen in Figure 3.7 where the
different values of o are used.
The value of the width o obviously depends on the scale of the data. Also note that
the same width is used for all features. To avoid having kernel values dominated by
a single feature, it is better to scale each feature of the input data to the same range.
In industry, input data are therefore often range scaled such that the minimum and
maximum of each input dimension are 0 and 1 respectively. Another type of scaling
also frequently used is mean scaling where each input dimension is scaled such that
it has zero mean and unit variance.

From our experience the RBF kernel is a good kernel to start with when analysing
a data set in order to find the optimal settings of the other parameters such as the
complexity and regularisation parameters. Optimisation of the value of ¢ may be done
through cross-validation [55],[58],[60], any line search method [6] or inspection of a
range of values [39],[60]. Since cross-validation techniques can be very time consuming

96

CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

(a) Presence of noise taken from N(0,0.07)

T T T T T T T T T

| |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(b) Presense of outliers

| |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(c) Region of low data density

Figure 3.6: The behaviour of SVM models using an RBF kernel for different data
sets. Graph (a) shows a data set with moderate noise level. In Graph (b) a number
of outliers were added. Graph (c) contains a data set with a low data density in

[0,0.5].

and are often not suitable for smaller data sets [55], we chose to implement the latter
approach in the software. The parameter that results in a model with the lowest
estimated VC-dimension [106],[11],[39] is then selected. Alternatively, one could also
use Vapnik’s measure, an estimation of the theoretical prediction risk [55],[11],[60] as
a selection criterion. Vapnik’s measure is given in Chapter 9. In Algorithm E the
algorithmic pseudo code for selecting the kernel parameter is given.

Algorithm E. Optimise kernel parameter

Step 1:

Step 2:

Select the learning data (x;,¥;),% = 1,...,¥#, kernel function K,
C, a complexity parameter (¢ or v) and iteration parameters
ker_start, ker_end and it_num.

Construct a vector p consisting of it_num values linearly dis-
tributed ranging from ker_start to ker_end.

3.5. CHOICE OF KERNEL AND KERNEL PARAMETERS

(@o=0.1 (b) 0=0.25

12

1.2

0.2 0.4 0.6 0.8 1) 0.2 0.4 0.6 0.8 1
X X

(c)o=05 (d)o=0.75
1.2 1.2

Figure 3.7: The effect of o on the SVM model.

Step 3: For k=1 to it_num
if complexity parameter is €,
run Algorithm B using p(k),
else run Algorithm C using p(k).
set w(k) =w
set b(k) =b
SV(k)={SV}
construct the model fi (%) = w(k)" Ky (%, %) + b(k)
calculate the predictions py(k) = fr(x)
end

Step 4: Find optimal model f* using Vapnik’s measure.

Step 5: Return optimal kernel parameter ker = p*.

58 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

3.5.2 Polynomial kernel

This type of kernel is classified as a global kernel and it gives the SVM model good
extrapolation properties. It may fail to interpolate well, since local phenomena, have
little influence on the kernel values and therefore, it is less sensitive to outliers. How-
ever, when these local phenomena are not due to noise or outliers, it may be better to
choose a local kernel like the RBF kernel. In Figure 3.8 the behaviour of a polynomial

(a) Presence of noise taken from N(0,0.07)

15

T

T

T

I
0.4

0.5

I
0.6

(b) Presence of outliers

!
0.4

0.5

!
0.6

(c) Region of low data density

Figure 3.8: The behaviour of SVM models using a seventh degree polynomial kernel
for different data sets. Graph (a) shows a data set with moderate noise level. In
Graph (b) a number of outliers were added. Graph (c) contains a data set with a low
data density in [0,0.5].

kernel model is shown for a data set with moderate noise, a data set with outliers
and a data set with a region of low data density. In all three graphs of Figure 3.8 the
same SVM parameters (C = 100.000,e¢ = 0.1) were used. From Figure 3.8 one can
see that the polynomial kernel is less sensitive to noise and outliers. Furthermore,
since the polynomial kernel has better extrapolation properties, it is less vulnerable
for regions where the data density is lower than the RBF kernel.

The choice of the degree of the polynomial kernel should be taken with great care.
In many nonlinear problems a rather high degree of polynomial kernel (above ten) may

3.6. CONCLUSION 59

be needed. In Figure 3.9 several degrees are used. Note that by increasing the degree

(a) degree =3 (b) degree =5

12

15

-0.2 -1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(c) degree =7 (d) degree = 10
1.2 1.2

Figure 3.9: The effect of the degree on the SVM model.

of the polynomial it may appear that a better model is built since the interpolation
ability increases. However, as will be shown in Chapter 5, the extrapolation ability
decreases dramatically at the same time, because high degrees of the polynomial may
cause the kernel values to explode. To avoid these runaway kernel values, it is better
to scale the input data and avoid using polynomials of too high a degree [88].

From our experience polynomial kernels should only be used when one suspects
the model to be polynomial of a relatively low degree. Optimisation of the degree is
similar to that of the width of the RBF kernel. The only difference with algorithmic
pseudo code given in Algorithm E is that in Step 2 only integer values are allowed.

3.6 Conclusion

Let us state the original design requirement again:

The inferential sensor should be able to handle high-dimensional data and
overcome the curse of dimensionality.

60 CHAPTER 3. HIGH-DIMENSIONAL DATA AND SPACES

One of the main advantages of using SVMs is that a kernel approach can be used
such that the learning machine partially overcomes the curse of dimensionality. We
say partially since the SVM only overcomes the part with respect to the predictive
performance to some extent. Since the SVM measures the complexity of the model
in terms of number of observations and the VC-dimension rather than the dimensio-
nality of the feature space, the curse of dimensionality with respect to making local
estimates, given in Properties 1 and 2, is overcome. However, the problem that the
prediction of unseen data points often results in extrapolation (Properties 3 and 4)
remains. This problem can only be solved with extra data or the addition of prior
knowledge of the unknown domains in the input space.

The second part of the curse of dimensionality, the computational degradation,
is overcome through the use of kernel functions since the very high-dimensional fea-
ture spaces are not considered explicitly but implicitly. It is now possible to use
very high-dimensional learning data without running into computational difficulties.
Furthermore, the support vector machine method is ideally formulated to use various
kinds of kernel functions in order to adapt to a nonlinear problem. Very complex and
nonlinear kernels can be used, resulting in highly nonlinear models in the input space.

One precautionary remark: It would be wrong to think that the Support Vector
Machine method makes feature selection applications obsolete. The SVM still has the
underlying assumption that all dimensions used, are relevant. In many real-life data,
especially in process data, the data set could be corrupted with numerous dimensions
that are irrelevant. Some of these irrelevant features may even consist only of noise.
A rule of thumb in this regard is garbage in, garbage out. Therefore, feature selection
should still be performed as a preprocessing step in order to remove all irrelevant
dimensions.

Chapter 4

Robustness

4.1 Introduction

Inferential sensors often have to operate with data that contain noise and several
outliers, and with the possibility that all kinds of changes may occur in the plant.
The term robustness is often used in industry to describe the inferential sensor’s
sensitivity to perturbations in the variables, parameters or learning data [22].

One important issue in industrial data is the presence of noise as well as the
characteristics of the noise. The noise is often neither constant nor normally dis-
tributed, which is an assumption many learning methods make. It is also known that
the quadratic loss function, which is used by least squares methods, is only optimal
for Gaussian noise models, i.e. normally distributed noise [22]. When the noise is
not Gaussian then, under the assumptions of symmetry and convexity of the noise
probability function, the least modulus loss,

L(yaf(xa a)) = |y - f(x7 Ol)| ’ (41)

should be used [27]. Minimisation of the empirical risk using (4.1) defines the robust
regression function [106]. In particular when only general information about the noise
is known, as is often the case, it is better to use the least modulus loss [22],[39].

Another issue is the presence of outliers. They occur all too frequently, even in
carefully conducted experiments [71]. In highly non-linear data sets the input and
output values of the outliers are most likely within the range of the input and output
space variables. As most classical outlier detection tools use graphical presentation as
detection method, the detection of such outliers will often fail [33]. The consequence
of this is that a number of outliers may still be present during the learning phase.
Therefore, it is necessary that the inferential sensor has some level of tolerance to
outliers [26].

It has been observed that one characteristic aspect of any inferential sensor is
that it should not only make accurate predictions, but also be robust to moderate
changes in the data [22]. Therefore, in the development of a inferential sensor it
is required that the learning machine resolves the subtle trade-off between accuracy
and robustness. In SVM for regression this trade-off is obtained through the use of

61

62 CHAPTER 4. ROBUSTNESS

different loss functions [78]. Furthermore, as the regularisation parameter C controls
the trade-off between the accuracy and the complexity [106], it is necessary to obtain
some insight into the use of this parameter.

In the first section of this chapter we show that the e-insensitive loss function is
a realisation of the least modulus loss. In the second section the SVM for regression
using a quadratic e-insensitive loss function is given and the algorithmic pseudo codes
for the e-SVM and v-SVM using the quadratic e-insensitive loss are given. Finally in
the third section the effect of the regularisation parameter is discussed and a method
for estimating its value is derived.

4.2 Linear e-SVM for regression

Consider the e-SVM discussed in Chapter 2

minimise §||w|| t ;(& +&)s (4.2a)
subject to ((w,x;) +b) —y; <e— &, i=1,...,4, (4.2b)
yi — ((w,x;) +b) <e+ &, i=1,...,4, (4.2¢)
&, >0, i=1,...,0L (4.2d)

Recall that through introducing Lagrange multipliers and finding the saddle point of
the Lagrangian, the Wolf dual problem can be written as

¢ ¢
maximise Z yi (af —oy) —¢ Z (af + ;)
i=1 =1
1L
-3 Z (af — a;) (a; — o) K(xi,%;5), (4.3a)
i,i=1
¢
subject to Z (af —a;) =0, (4.3b)
=1
. C :
0 <ay,a; S?’ i=1,...,4 (4.3c)

Defining w = o — a and SV as the set of support vectors, the resulting model then
has the form
F&) =) wiK(xi,%) +b, (4.4)
icSv
where b is determined by (2.53).

In Chapter 2 we explained that the linear e-insensitive loss function has the ad-
vantage of realising a model that has a sparse representation in terms of the support
vectors, as seen in (4.4). However apart form that, the e-insensitive zone has another
advantage. For € = 0 the e-insensitive loss is equivalent to the least modulus loss
[39],(88]. Thus the SVM for regression using the linear e-insensitive loss function is
suitable for problems for which only general information on the noise is available.

4.3. QUADRATIC ¢-SVM FOR REGRESSION 63

Furthermore, as it is known that there is a linear dependency between e and the
amount of noise in the data [45],[90], the following observations can be made with
respect to the influence of noise on the performance of the SVM [59],[55]:

1. If the noise power is very small compared to €2 the performance of the SVM for
regression is not affected by the presence of noise;

2. If the noise power is smaller than €? the e-insensitive zone masks the presence
of noise and the performance of the SVM can be expected to increase;

3. If the noise power is equal to or larger than €* the e-insensitive zone no longer
mask the noise and the ratio of support vectors saturates to one. The perfor-
mance of the SVM slowly degrades as the ratio of support vectors approaches
one.

Therefore, € is an ideal parameter for controlling the effect that noise has on the
performance of the model.

Note that the e-insensitive loss function allows only data points that are outside
the insensitive zone to enter the empirical risk term in (4.2a). It would therefore seem
that in the presence of outliers the SVM for regression is largely determined by the
outliers. The contrary is in fact true as seen in Figure 4.1. It has been proven in [78]
that, using the SVM for regression with the linear e-loss function, local movements
of the output values of data points outside the e-insensitive zone do not influence
the regression. The proof is based on the fact that for all data points outside the
insensitive tube, the upper bound for the corresponding a; or o in (4.3c) is the
same. In fact, all support vectors that do not touch the tube will have an absolute
value equal to the upper bound. The result is that the outliers do not have an adverse
effect on the model. Note that one of the requirements for robust estimators is that
the influence of the outlier data points should be bounded from above [78], [28].
Thus, the resistance of the SVM for regression to outliers is in close spirit with robust
estimators, making it ideal for industrial applications [22].

4.3 Quadratic e-SVM for regression

We argued that the linear e-insensitive loss should be used when the noise distribution
of the data is not expected to be Gaussian and especially in cases where outliers might
still be present in the data. There are of course cases where one might prefer to use the
quadratic loss function, but with the advantage of complexity control and insensitivity
to low noise levels [58]. To construct such a learning machine in the spirit of support
vector theory, the quadratic e-insensitive loss function, as seen in Figure 4.2, can be
used. For a given learning or training data set x; € X C R",y; € R with £, the
quadratic e-insensitive loss function is formally given by

L5 (x,y,f (x)) = ly - f(@)]2. (4.5)

The e-SVM for regression using the quadratic e-insensitive loss function is then given

CHAPTER 4. ROBUSTNESS

Learning Data

32.5% support vectors ___ SVM Prediction

64

1.2
1

©

T

[a]

5

o

5

(@]
-0.2

by

T T T T T T T

€ —insensitive zone

|
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Data

Figure 4.1: The quadratic e-insensitive loss-function.

¢
e . 1 2 C 2 *\ 2
minimise 2 | wl +7 ; (fi + (&)), (4.6a)
subject to (W -x;)+b) —y; <e+ &, i=1,...,4, (4.6b)
yl—(<le>+b)§e+fl*, z:]-aaea (46C)
&6 >0, i=1,...,L (4.6d)

Similarly as in Chapter 2, the dual formulation of the QP problem in (4.6) can be

4.3. QUADRATIC ¢-SVM FOR REGRESSION 65

2e

~ | 7

0

Figure 4.2: The quadratic e-insensitive loss-function.

obtained. After using the kernel “trick” again, the Wolf dual can be written as

£
. 1 1
maximise ~3 ”Z_I — ;) (K(xi, x;) + %5“)
£
+Z o —) Z—ez T+), (4.7a)
i=1
£
subject to Z (af —a;) =0, (4.7b)
i=1
a;>0,ai >0, i=1,...,L (4.7¢)

The SVM model, in terms of the support vector weights w = a* — a, remains the
same as in (4.4).

Next we write the QP problem in terms of the Hessian matrix and separate matri-
ces for the equality and inequality constraint. Define I,, as the n x n identity matrix.
The Hessian matrix H is the 2/ x 2¢ matrix such that

_(K(x,x) —-K(x,x) 14
= (—K(x,x> K(x,x>) ool

66 CHAPTER 4. ROBUSTNESS

*
For B = [a] , the SVM for regression in matrix notation is then to minimise
fo%

1 el —y|*
- _
—8TH 4.9
w302 o
subject to the equality constraint
T
1
[‘] B=0 (4.10)
1,
and the inequality constraints
02 < 8. (4.11)

The algorithmic pseudo code of the e-SVM for regression with quadratic loss can be
found in Algorithm F.

Algorithm F. SVM for regression with quadratic loss

Step 1: Select the learning data (x;,¥y;),? = 1,..., ¥, kernel function K, C
and epsilon.

Step 2: Construct matrices for the QP problem.
Step 3: Solve (4.9) subject to (4.10) and (4.11) for 8.
Step 4: Steps 4-10 of Algorithm B.

Similarly to the derivation in Chapter 2, the »-SVM with quadratic e-insensitive loss
function can be given. We give only the optimisation problem in terms of the required

matrices. The Hessian matrix H is the same as in (4.8). Using # = [‘Z] , the »-SVM

for regression using quadratic loss minimises

1 AT
~8THS + [y] B (4.12)
2 y
subject to the equality constraint
T
1
[‘] B=0 (4.13)
1,

and the inequality constraints

02, B o0 - 1oy
< < . 4.14
o= s = [V] (410
The algorithmic pseudo code of the v-SVM for regression with quadratic loss can be
found in Algorithm G.

4.4. CHOICE OF REGULARISATION PARAMETER 67

Algorithm G. v-SVM for Regression with quadratic loss

Step 1: Select the learning data (x;,¥y;),? = 1,..., ¥, kernel function K, C
and v.

Step 2: Construct the matrices for the QP problem.
Step 3: Solve (4.12) subject to (4.13) and (4.14) for 8.
Step 4: Steps 4-10 of Algorithm B.

4.4 Choice of regularisation parameter

Consider the e-SVM with quadratic e-insensitive loss in (4.6). The parameter C in
(4.6a) controls the trade-off between the complexity of the model (1/2 || w ||?) and
the training error (1/¢ Zle &+ (fl*)2)) [106]. C is also called the regularisation
parameter since it corresponds to the parameter v of the regularisation method for
solving ill-posed problems as C = 1/« [108].

Finding the optimal value for C still remains a problem. Many researchers sug-
gested that C should be varied through a wide range of values and the optimal per-
formance is then measured by using a separate validation set or other techniques
such as cross-validation or boot-strapping [10],[55],[58],[60]. Vapnik mentioned in
[106] three methods for choosing the optimal regularisation parameter, namely, the
L-curve method [15], the method of effective number of parameters [24] and the ef-
fective VC-dimension method [108],[109]. Each of these methods uses a different
approach for measuring the performance and complexity of the model and originates
from different theories. One common problem with many of the suggested approaches
is that they are not suitable for large-scale problems. The computational effort to
determine the eigenvalues of large matrices or using resampling limits their use in
online applications.

In particular, if one needs to make a quick assessment whether a given data set can
be solved with the SVM method or if a given kernel function is an appropriate choice,
a fast estimation method is extremely useful. Furthermore, since the C' parameter is
known to be a rather robust parameter, determining the true optimal value is often
not worth the effort [34]. In SVM literature it is often suggested that C should be
chosen sufficiently large. But what value is large enough? If an estimation method
can give a good indication of the magnitude of C, one can at least start from an
informed guess.

It is known that the scale of the regularisation parameter is affected by several
factors. It has been shown by Smola [87] that the optimal regularisation parameter
depends on the value €. Since € is used to control the complexity of the model and de-
pends on the noise level in the data, the choice of the optimal value of C assumes some
knowledge about the underlying noise distribution as well as the inherent complexity
of the model. Often, this knowledge is not available. In [10] the authors indicate that
the regularisation parameter C is also affected by the choice of feature space. The

68 CHAPTER 4. ROBUSTNESS

consequence of this is very significant, since the feature space is determined by the
specified kernel, which is in fact an operator associated with smoothness. Therefore,
the choice of regularisation parameter cannot be based on one factor alone, but on
the combined influence. None of the heuristics of estimation methods in the litera-
ture does that. The research was therefore aimed at deriving an estimating rule that
combines the characteristics of the feature space, the expected noise level, and some
other contributing factors.

4.4.1 Results from the L-curve method

The L-curve method is derived from the theory of solving ill-posed problems [15]. It
is a well established method and one of the few approaches in regularisation theory
that takes into account both the norm of the solution and the norm of the error [23].
Vapnik has shown in [106] that the L-curve Method can be applied for SVMs for
regression with a quadratic loss function. The resulting terms for the norm of the
solution and the norm of the error, are then given by the following two functions,

n() = lwal®,

N
= Y BB MK (xi,x5) (4.15)

i,5=1

and

1 Z:l N 2
= 3 Z (yz - Zﬂk(’)’)K(xk,xi)> , (4.16)
i=1 k=1

where N is the index set of the support vectors.

The L-curve is the log-log plot of n() against p(y). The distinct L-shape of the
curve is shown in Figure 4.3. The L-curve method is a very useful graphical tool
which is used to display the trade-off between the complexity and the error. If too
little complexity is used, the right ‘leg’ of the L-curve is dominant and the model
typically underfits (see Figure 4.3(b)). When the left ‘leg’ of the L-curve is dominant,
the model uses too much complexity and starts to overfit as seen in Figure 4.3(d).
The corner point of the L-curve corresponds to the optimal value of the regularisation
parameter for which the model has the right balance between complexity and the error
term.

Finding the corner point of the L-curve involves finding the minimum of the func-

4.4. CHOICE OF REGULARISATION PARAMETER 69

(a) L-Curve (b) Model with C=5
1.2

C=7220809

In(Solution norm)
N IS

o

C=5
-2 of -
-0.2
-10 -5 0 0 0.2 0.4 0.6 0.8 1
In(Error norm)
(c) Model with C=254 (d) Model with C=7220809

-0.2 -0.2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4.3: The form of the L-curve is shown in graph (a). Graphs (b),(c) and (d)
show models for various values of C.

tional
1 N 2
H(y) = ZZ< D 16) $k,$i)> '
i=1 b k=1
Z (xi’xj)
= p(v)n () (4.17)

In regularisation theory, the corner point of the L-curve is normally found by deter-
mining the curvature of the L-curve. In [23] an expression for the curvature of the
L-curve is derived in terms of p(v) and n(y) and their derivatives. As part of the
derivation of the curvature expression, an important relation between the derivative
of p(y) and n(y) emerged. And it is this relation we are interested in.

Consider the following minimization problem

2y = argmin{HAz — b||§ + ||z,y||§} , (4.18)

70 CHAPTER 4. ROBUSTNESS

where A is a symmetric positive (semi)definite coefficient matrix and b the given
output data. Using the SVD decomposition of A [97], the norms of the solution and
error can be written as

£ ToN 2
n(y) = Z(fzuélb) (4.19)
£
and p(y) = Y (- fiulb)’, (4.20)

where u; are the singular vectors, o; the singular values, and f; the Tikhonov filter
factors [21], that depend on o; and v as follows,

o2

;= t . 4.21
fi= g (421)

The derivatives of 5(y) and p(y) to 7, are then given by

/ - 5 A . ul_Tb 2
0 = 2 a-nn (%)) (4.22)
£
ad p0) = 23 £ AW (4.23)

(Note that in [23], these equations were derived using ¥ which resulted in having a
factor 4 instead of 2 in each equation.) Rewriting p'() and using the fact that
fi 1 _1-f

of ity 7

2

?

leads to the following important relation

p(y) =—y'(v). (4.24)

4.4.2 Estimate for C

The relation (4.24) also applies to the Support Vector Machine formulation with qua-
dratic loss when the implicit feature space, defined by the kernel, is considered. In
this section, the relation (4.24) combined with (4.17), is used to derive an estimate!.
First, consider the functional (4.17). In order to find the optimal regularisation pa-
rameter v, (4.17) has to be minimized, that is to set H'(y) = 0. The derivative of
H'(~) is given by

P +p(Mn'(v) = 0
Pl _ e
and) aly)’ (4.25)

11t is also interesting to note the close resemblance between the derivation of the expression for
the curvature of the L-curve, which uses the SVD decomposition, and the use of the eigenvalues and
eigenvectors in the method of the effective number of parameters that was suggested in statistics for
estimating parameters for ridge regression [24].

4.4. CHOICE OF REGULARISATION PARAMETER 71

Rewriting the relation (4.24), given in the previous section, such that + stands alone
and using (4.25), leads to
P _ ()

7 ()
Now using the fact that C = 1/, we arrive at

=3

_ ()
C="05 (4.26)

This equation forms the basis of the estimate 2.

Since the true solution and therefore, true error, is unknown, we will use upper
and lower bounds in terms of the a priori parameters. From the SVM theory, it
is known that the norm of the solution |w|®> < R2, where R is the radius of the
ball centred at the origin in the feature space and which can be computed as R <
maxi <j<¢ (K (z;,2;)) [106]. Therefore,

. . 2
n < max (K (i, 2:))". (4.27)
Now, consider the term for the norm of the error, p. Let §; be the predicted output
value of y; of the SVM model. Since the SVM for regression uses an e-insensitive loss
function,

1< ul ’
p= 3 > (yz - Zﬂk(V)K(ﬂﬂk,%’))
i=1 k=1
1L
= 7 Z (yi — gz)2
i=1
1L
> EZU% — il —€)”. (4.28)
i=1

It is clear from (4.28) that a lower bound in terms of e priori information should
involve the number of data points, the range of the output data and the value of e.
Since no such bound exists in the literature, a function involving £, € and the range
of the output data will be derived empirically.

First, let us investigate the effect of the maximum kernel values and € on C. In our
analysis we used several data sets that varied in the number of input dimensions, the
number of data points and the range of the output data. We determined the optimal C'
value using the L-curve method. Numerous SVMs using various values for € and three
types of kernels, namely the RBF, polynomial and mixture of a RBF and a polynomial,
were constructed. In Figure 4.4 we show the effect that the maximum kernel value,

2Vapnik derived in Chapter 7 of [106] a similar relation for v as in (4.26) as part of the proof
of a theorem. Vapnik used, however, a different approach. The relation p2(Afy, Af) < 2d,/47 can
be rewritten to v, > p2(Afy, Af)/4d%. A is an operator in a Hilbert space and the function pg is
metric measuring the distance between the true output Af = F and the predicted output Af; of the
optimal solution f;. Finally, d is chosen such that ||f|| < d.

72

7000
6000
5000
4000

L-Curve C

3000

2000

1000}

12000

10000

8000

L-Curve C

6000

4000

2000
0

(a) Max(K)=1

R(y)=1.3616

R(y)=1.2409

R(y)=2.0017

0.05 0.1 0.15

(c) Max(K)=2.2

0.2

R(y)=2.0017

0.05 0.1 0.15

0.2

L-Curve C
= N
(¢, N u

=

0.5

CHAPTER 4. ROBUSTNESS

« 10° (b) Max(K)=1.85

R(y)=1.1327
e

/
/
/ Ry)=13616
;
/

| R(y)=1.2409

/

0
0 0.05 0.1 0.15 0.2
€
x 10* (d) Max(K)=9
5
4
©]
o 3
c
o
T 2
-
R(y)=2.0017
1
0
0 0.05 0.1 0.15 0.2

Figure 4.4: The effect of the maximum kernel value and € on the optimal value of C.
Increasing maximum kernel values lead to increasing C values.

4.4. CHOICE OF REGULARISATION PARAMETER 73

an o priori measurable characteristic of the type of kernel, has on the value of C.
It is clear that as the maximum value of the kernel increases, the magnitude of the
optimal C is increased as well. This confirms the role of the kernel value in estimating
C. Furthermore, in all four graphs of Figure 4.4, we see the same trend with respect
to increasing values of €. The effect that € has on C seems to follow some kind of
growth function.

(a) Effect of € (constant Max(K))

8000 T T T T T T T
R(y)=1.3616
6000 [. B
O 4000 R(y)=1.2409
2000 |- -7 .
0_-4—7*—-’j' R(y)=2.0017
0 0.02 0.04 0.06 0.08 0.1 0.12 014 . 016
(b) Effect of € (normalized w.r.t. R(y))
8000 T T T T T
n=100
6000 [B
O 4000 n=225 B
- n=50
2000 - :
0 oo - - t I | |
0 0.02 0.04 0.06 0.08 0.1 0.12
) e/R(y)
(c) Effect of € (normalized w.r.t. n)
80 T T T T T
60 B
c
o 40r 1
20) . i
O‘———__T_fﬁ I —— '\—‘,’ I I
0 0.02 0.04
0.06 0.08 0.1 eR(Y) 0.12

Figure 4.5: Normalisation with respect to the maximum kernel value, graph (a), the
range of the output values, graph (b), and the number of data points, graph (c).

Our next step is to eliminate the influences of the maximum kernel value, the range
of the output data as well as the number of data points. In Figure 4.5 the normalised
results are shown. In Figure 4.5(a) the normalisation with respect to the maximum
kernel value is done by considering the results for a constant maximum kernel value.
Figure 4.5(b) shows the normalisation with respect to the range of the output values.
The result is that the curves are in closer proximity of each other. The normalisation
with respect to the number of data points is shown in Graph (c) of Figure 4.5. In
this graph the curves lie almost on top of each other. All three graphs in Figure
4.5 give confirmation, at least experimentally, of the role that the maximum kernel
value, the range of the output values as well as the number of data points play in the
determination of C.

74 CHAPTER 4. ROBUSTNESS

In Figure 4.6 the normalised data of all experiments shown in Figure 4.4 is shown.
We also show a fitted growth function in terms of ¢/(Range(y)). Using the results in
Figure 4.6, we arrive at the following estimation rule for C'

"y a2 _ 30
Cest =4 lngl;@%cl(K(xl,xl)) 2 exp (Range(y) . (4.29)

f(e)=2*exp(30(e/R(y)))
90 T T T T T T

80

70

60

a1
o

Cl(max(K)*Ch)
3

30

20

10

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
€ /R(y)

Figure 4.6: Best exponential fit of the normalised data.

4.4.3 Experimental results

In this section the estimated value of C, using (4.29) is compared to the value of C
determined by using the L-curve. Several data sets with varying sizes, noise levels
and dimensions were used. The results for f(z1, z2) = z122+ 1 with (z1,2z2) € [-1,1]
(equivalent to a continuous version of the 2D XOR problem) is presented in this
section. The learning data consisted of a random sampling of this function after
a noise level of N(0,0.05) was added. In Figure 4.7 the results from the L-curve
approach are compared to the estimated value of C using a RBF kernel with a width
of 0.2 and an € of 0.05.

4.4. CHOICE OF REGULARISATION PARAMETER

(a) Error Statistics

==

—_—

75

T
P —— Corr.Coeff
....... L - R, Stat
. . — - RMSEP
2 S ST ;)
05t PR (O L] Ratio sv's
- _ 7
7 B T~ =~
0 ‘ o —
0 10 20 30 40 50
(b) L-Curve jteration (c) Corner of L—Curve
4 .
1.8 L-Curve (C=1151)
2 > 1.6
0 1.4
) 1.2 T
1| Estimate (C=950)
-10 -5 0 -6 -5.5 -5
(d) Model with L-Curve C (e) Model with estimate of C
1 . . - . . .
5 5
o o
= 5
o] (@]
e) e)
o 2
Qo Qo
=) e)
g o
o a
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Observed Output Observed Output

Figure 4.7: Results for a RBF kernel of width 0.2. The (near) optimal value of C is
indicated by an asterisk and the estimated value of C by a circle. (a) Error statistic
for each iteration step in the L-curve method. The L-curve is shown in (b) and the
corner point of the L-curve in (c). In (d) and (e) the performances of the model using
the optimal C' and the model using the estimated C are shown respectively.

The L-curve approach requires the building of several models for increasing values of
C. The range of values for C considered needs to be large enough, otherwise the corner
point of the L-curve cannot be seen. Therefore, the resolution of the C-values being
used, were chosen on a logarithmic scale. Figure 4.7(a) shows various error statistics
of models for increasing values of C'. The resulting L-curve is plotted in Figure 4.7(b).
The area between the vertical dashed lines in Figure 4.7(a) corresponds to the area
in the corner of the L-curve, as shown in Figure 4.7(b). The area around the corner
point in the L-curve is shown more clearly in Figure 4.7(c). In Figure 4.7(a) and
Figure 4.7(c) the location of the optimal C-value is indicated by the asterisk and the
circle shows the location of the estimated C-value. Finally, Figure 4.7(d) and Figure
4.7(e) show the performance of the models built using the (near) optimal C' and the
estimated C, respectively. In this example the estimated value of C' = 950, is rather

76 CHAPTER 4. ROBUSTNESS

close to the (near) optimal value of C = 1151 from the L-curve, as seen in Figure
4.7(c). However, as the values of C in Figure 4.7(C) ranges from just over 200 up to
15,000, it is clear that C' is a robust parameter. Therefore, the estimation needs only
to predict a value of C close to the corner of the L-curve.

Table 4.1 shows the performance of SVMs using the estimation of C' with respect
to the performance of SVMs using the optimal C' obtained from the L-curve method.
More information on the R? and RMSEP error measures can be found in Chapter 9.
It is clear from Table 4.1 that the estimated value of C' produces models with error
statistics that compare well with the error statistics of a model using the optimal
value of C, including the percentages of support vectors.

Table 4.1: Performance of SVMs using the estimated value C' and polynomial kernel
of degree 2. The values in the brackets give the corresponding result when using the
optimal C obtained by the L-curve method.

| e

Value of C

% sv’s

R2-statistic

RMSEP

0 36000 (8929) | 100 (100) | 0.9704 (0.9704) | 0.0657 (0.0657)
0.025 || 53000 (12356) | 76 (74) | 0.9703 (0.9702) | 0.0658 (0.0659)
0.05 || 77000 (17100) | 48 (46) | 0.9699 (0.9698) | 0.0662 (0.0664)
0.075 || 110000 (23664) | 26 (25) | 0.9695 (0.9692) | 0.0667 (0.067)

0.1 || 160000 (32748) | 15 (15) | 0.9689 (0.9684) | 0.0674 (0.0679)
0.125 | 240000 (45320) | 8 (8) | 0.9678 (0.9674) | 0.0685 (0.069)

The CPU time for determining the (near) optimal value for C through the L-curve
method was on average around 90 seconds. For the estimation method, the CPU time
was less than 1 second. The computational advantage speaks for itself. The estimated
value of C can also help to speed up the L-curve method, since one can get a good
initial guess for a starting point of the algorithm.

4.5 Conclusion

Let us consider the design requirement on the robustness again.
The inferential sensor should be robust to noise and outliers in the data.

In this chapter we have shown that the SVM for regression with linear e-insensitive
loss function is in close spirit of robust estimators. We further discussed how the
performance of the SVM is affected by the noise power with respect to the value of
€. It was also shown how the SVM using linear e-insensitive loss is unaffected by the
presence of outliers. Thus the linear e-insensitive loss function makes the inferential
sensor robust to noise and outliers.

The e-SVM and v-SVM using the quadratic e-insensitive loss were also derived
and their corresponding algorithmic pseudo codes were given.

We further presented a method for estimating the regularisation parameter C for
SVM for regression. The estimation is based on results from the analysis of the L-

4.5. CONCLUSION 77

curve method. It was mentioned in the introduction that choosing a value for C
should involve taking into account several factors, including the kernel function and
the noise level. These factors are all present in the heuristic proposed.

Comparing the values of C obtained from the L-curve method with the values
determined by the estimate, using several data sets, showed that the estimates of
C-values are in close proximity to the optimal C. Furthermore, the difference in
performance between a model using the C-value determined by the L-curve and a
model using the C estimated by the method, is very small and often negligible.

The computation time needed to determine a good estimate of the optimal C is
a fraction of the time needed to determine the (near) optimal value of C' by means
of the L-curve method. Therefore, the proposed estimation method can be used for
online applications in industry. In particular, if one needs to make a quick assessment
of whether a given data set can be solved with the SVM method or if a given kernel
function is an appropriate choice, the fast and robust estimation method is extremely
useful.

In the results given in this chapter, only the e-SVM was considered with quadratic
loss, assuming that the € is known a priori. Future work needs to be done for deriving
similar estimates for the e-SVM with linear loss as well as the »-SVM [10],[89], where
the expected ratio of support vectors is used instead of e.

78

CHAPTER 4. ROBUSTNESS

Part 11

Application Stability
Requirements

79

80

Chapter 5

Generalisation Ability

5.1 Introduction

Although many measurements are being taken in a process, a process in a pilot
plant cannot be run over the whole range of possible process conditions to obtain
information over the whole input space. It is too expensive and very time consuming.
The result is that the learning data often cover only a small part of the input space.

Therefore, when a process is in operation on the plant it may venture into operating
regions that were unknown at the time of modelling. Most empirical models, such as
NN’s, do not extrapolate well [70]. Therefore in many inferential sensor applications
efforts are made to restrict the inferential sensor’s predictions to the known input
space [70]. However, it is often expected by the process engineers that the model is
able to predict unseen data within a reasonable distance from the known input space
well. And for unseen data that are too far away, a “graceful degradation” of the
model is preferable. That means, the model does not become instable and exhibit
erratic behaviour.

The design requirement for the inferential sensor is therefore that it is able to
predict unseen data in regions of low data density in the known input space as well
as regions that are outside the known input space.

In Part I of the thesis, we showed that SVM has the ability to achieve a number of
learning requirements. One feature of the SVM method is that it uses kernel functions
to map the learning data (nonlinearly) into a higher dimensional feature space where
the learning ability of the linear learning machine is increased. The type of kernel
used has an influence on the learning machine’s generalisation ability [86]. That is
the ability to predict unseen data accurately. One way to interpret the generalisation
ability is to consider the interpolation and extrapolation abilities of a model. Here
we use the term interpolation to indicate when a prediction of an unseen data point
within the known input space is being made, including regions where the data density
is low. Extrapolation occurs when the unseen data point originates outside the known
input space and the model is forced to predict in a region where nothing is known.

Every kernel has its advantages and disadvantages with respect to interpolation
and extrapolation abilities. Often the kernel has either good interpolation abilities or

81

82 CHAPTER 5. GENERALISATION ABILITY

good extrapolation abilities. Seldom it has both. Preferably the “good” characteris-
tics of two or more kernels should be combined. In this chapter it is shown that using
mixtures of kernels can result in having both good interpolation and extrapolation
abilities. The performance of this method is illustrated with an artificial as well as
an industrial data set.

The layout of the chapter is as follows. In the first section the interpolation
and extrapolation capabilities of SVMs using the RBF and polynomials kernels are
investigated. The mixed kernel approach is introduced in section two. In the final
section, the improved interpolation and extrapolation ability of the mixed kernel is
shown.

5.2 Interpolation and extrapolation

Consider the SVM model in terms of the determined weights and bias, the chosen
kernel function and the given support vectors,

F&) =D ojK (xi,%) +b. (5.1)

icSV

Much of the characteristics of the model in (5.1) are determined by the type of kernel
function used. The quality of a model should not only be measured in terms of its
ability to learn from the data but also its ability to predict unseen data. The model’s
ability to predict unseen data within the known input space as well as outside the
known input space is investigated in this section.

Polynomial and RBF kernels are used to show the difference in interpolation abi-
lities of SVM models built using different types of kernels. The reason for analyzing
these two types of kernels is twofold. Firstly, they can be used as representatives of
a broader class of local and global kernels respectively. Secondly, these kernels have
computational advantages over other kernels, since it is easier and faster to compute
the kernel values.

For the analysis, the following sinc function with an added linear component, is
used:

_ sin(50z)
- 50z

where z (250 data points) was drawn from a uniform random distribution between
[-1,1]. See Figure 5.1. As a learning set z € [—0.5,0.5] and the corresponding
output y is used. For the SVM models the following parameters were used: € = 0.01,
C = 1000 and the linear e-insensitive loss-function.

In Figure 5.2 SVMs using polynomial kernels of various degrees were determined.
The SVMs were trained on the data between the vertical dashed lines. Beyond these
lines, the SVM will have no information available and any prediction will be the result
of extrapolation. In Figure 5.2(a) it is observed that for lower degrees of polynomial
kernels the extrapolation ability gets better. However, for good interpolation ability
higher degree polynomials are required, as seen in Figure 5.2(b). No single choice of
kernel parameter, the degree of the polynomial, results in a SVM that will provide
both good interpolation and extrapolation properties.

+z+1, (5.2)

5.3. MIXED KERNEL APPROACH 83

1.8

1.6

1.2

Output y
-
T

0.6

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.1: Sinc Function with added linear component as defined in (5.2). The
learning range is [—0.5,0.5].

In Figure 5.3 the RBF kernel is analyzed in the same manner. The width of
the kernels were varied between 0.01 and 0.25. The SVMs were again trained on
the data between the vertical dashed lines. Beyond these lines, the SVM will have no
information available and will need to extrapolate. When one attempts to extrapolate
outside the input data range combined with the width of the kernel, their is no
local information available and the prediction values level off. This is clearly seen
in Figure 5.3(a). If one uses too large values of o, as seen in Figure 5.3(b), the
interpolation ability of RBF kernels decreases. Therefore, no single value of the kernel
parameter, g, will provide a model with both good interpolation and extrapolation
properties.

5.3 Mixed kernel approach

From the previous section, it is observed that a polynomial kernel (a global kernel)
shows better extrapolation abilities at lower orders, but requires higher orders for
good interpolation. On the other hand, the RBF kernel (a local kernel) has good
interpolation abilities, but fails to provide longer range extrapolation. Preferably one

84 CHAPTER 5. GENERALISATION ABILITY

2 ‘ ..#| - Data
I — =10
. . q:15
15F 1 1| — 9=20
- I — - =25
3 1f 1
5 |
© i
0.5 | B
! oo
opT | .
-1 -0.8 1

(b) x

Figure 5.2: SVM using polynomial kernels (a) for degrees ¢ = {1,2,3,4} (b) for
degrees ¢ = {10, 15, 20, 25}.

5.3. MIXED KERNEL APPROACH 85

Data
— 0=0.01
. 0=0.05
c—. 0=0.1
>
5
Q.
F
o
Data
— 0=0.15
- 0=0.20
.= 0=0.25
>
5
Q.
=
O

(b) x

Figure 5.3: SVM using RBF kernels (a) for widths of ¢ = {0.01,0.05,0.1} (b) for
widths of o = {0.15,0.2,0.251.

wants to combine the “good” characteristics of the two kernels. Therefore, we will
investigate whether the advantages of polynomial and RBF kernels can be combined
by using mixtures.

There are several ways of mixing kernels. What is important though, is that the
resulting kernel must be an admissible kernel [5]. One way to guarantee that the
mixed kernel is admissible, is to use a convex combination of the two kernels Kp,,
and K, s, for example

Kmiw - proly + (1 - p)Krbfa (53)

where the optimal mixing coefficient p has to be determined. The value of p is a
constant scalar.

In Figure 5.4, the effect of mixing a polynomial kernel with a RBF kernel is shown.
The same example as in the cases of polynomial and RBF kernels was used to show
the combined effect of using a mixture of a local and global kernels. The degree of
polynomial and width of RBF were fixed to 1 and 0.15, respectively. Only the mixing
coeflicient was varied between 0.5 and 0.95. Smaller mixing coeflicients are not shown,
because the effect of the global kernel only then becomes significant. Figure 5.4 shows
that the kernel has not only a local effect, but also a global effect. By increasing the

86 CHAPTER 5. GENERALISATION ABILITY

14 T T T T T T T T T
— p=05

- p=06
- -p=07

1.2

Kernel Value

0.2 B

Test Input
i
|
A\
0 lo | | | N 7 | | o
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.4: Example of a mixed kernel with first degree polynomial and RBF with
width 0.15.

mixing coefficient, the influence of the global kernel is also increased. Similar to the
3D-view of the RBF and polynomial kernels shown in Chapter 3, the 3D-view of the
mixed kernel in Figure 5.5 give an interesting perspective on the combined effect of
the two kernels.

Another possibility of mixing kernels is to use different values of p for different
regions of the input space. p is then a vector. Through this approach the relative
contribution of both kernels to the model can be varied over the input space. In this
section, a uniform p over the entire input space is used.

The same data set used in the previous section will also be used to examine a
mixture of polynomial and RBF kernels. In Figure 5.6 the SVM predictions of the
test set are given using the mixing coefficients p in the range [0.5,0.99]. Here, a
value of p = 0.95, for example, means that the relative contribution of the polynomial
kernel to the mixed kernel is 95% whilst the RBF kernel contributes the remaining
5%. Again, the SVMs were trained on only the data between the vertical dashed lines.
Beyond these lines, the SVM will have no information available and any prediction is
the result of extrapolation. Note that the SVM models using the mixed kernel have
far better extrapolation capabilities than the SVMs using either the polynomial or

5.3. MIXED KERNEL APPROACH 87

w=(0,0] w=(0,0.25)

Figure 5.5: A 3D-view of the effect of the mixing the RBF and polynomial kernels.

RBF kernels on their own.

What is remarkable, is that only a “pinch” of a RBF kernel (1—p = 0.01) needs to
be added to the polynomial kernel to obtain a combination of good interpolation and
extrapolation abilities for the same kernel parameter values. It is striking that both
these properties can be achieved with a single choice of parameters for a mixed kernel.
Using higher degrees of polynomials or larger widths of RBF kernels did not produce
better results. Using the same criterion as in the previous section, the optimal value
of p was found to be 0.95.

88 CHAPTER 5. GENERALISATION ABILITY

p=0.99
T T T T T T T T T T T 0=0095
21 | | g .
| | +~>|p=0.9
[‘ ‘. p=0.8
L | | o
| | p=07
B : : 1 p=06
| p=05
L | | -
| |
| |
L | | i
- \ \
5 | |
31r | | 8
=
o | |
L | | -
| |
| |
p=05 i I I T
p=06 T :
’
p=07 G \ 7
p=038 - I |
p=09 F . [[i
p=095 - : :
p=0.99 0 . | | i
! ! | ! ! ! ! ! | ! !
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.6: SVM using mixed kernels of first degree polynomial, o = 0.05 width of
RBF and p = {0.5,0.6,0.7,0.8,0.9,0.95,0.99}.

5.4 Industrial application

An industrial data set was used to test whether the advantages of using mixed kernels
also apply to noisy, real-life data. The data were obtained from a process of The
Dow Chemical Company in Freeport, USA, from 1997 to 1999. Samples were taken
approximately every six to eight hours and sent to a lab for analysis. The input
variable, a ratio of two temperatures, was selected after an extensive feature selection
process using NNs. All observations with temperature ratio smaller than 0.9 and
larger than 1.1 together with a number of randomly selected observations within the
range were used as test data. The rest were used as learning data. The learning set
consisted of 627 observations and the test set had 561 data points. The learning input
data were range-scaled to [0, 1] and the resulting scaling parameters were then used
to scale the test data.

SVM models using a polynomial kernel and RBF kernel individually were then
determined. In all models an e-value of 5 was used, because that is an acceptable
error level in the process. For the SVM Models with polynomial kernels, degrees from
1 up to 5 were used. The predictions of the learning set for the different models are

5.4. INDUSTRIAL APPLICATION 89

SVM's using Polynomial (Learning Set)
45 T T T T T

Degree 2 . .
Degree 3 Degree 3
40 ' "| Degree 2
Degree 5 4
Degree 4 35 7" Degree 5
=" Degree 4
30
Degree 1
25
5
g 20
3
o
>

15

10 “| Degree 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X input

Figure 5.7: SVM predictions of the learning set, using polynomial kernels of various
degrees.

shown in Figure 5.7 and the predictions for the test set can be found in Figure 5.8.
Figure 5.8 also indicates where a model interpolates and where it extrapolates. The
model interpolates where data has been available during the training phase, indicated
by the area between the vertical dashed lines. Outside this area, the model will
extrapolate since there was no information available during the learning process.

The number of support vectors used by each model ranges between 8 and 11
percent of the learning data. Note that the SVMs using the second and third degree
polynomials are able to roughly follow the trend of the test data, but fail to predict
it accurately. Increasing the polynomial order does not improve the generalisation
capabilities.

In the SVM Model using RBF kernels we used widths ranging between 0.1 and
0.5. Again in all models an e-value of 5 was used.

The predictions of the learning set are shown in Figure 5.9. Figure 5.10 displays
the predictions of the test set as well as the known input space (the area between
the vertical dashed lines). The number of support vectors used by each model ranges
between 7 and 10 percent of the learning data. One inherent property of RBF kernels
is clearly seen in Figure 5.10: although the RBF kernel interpolates very well within
the known input space, it fails to extrapolate outside the range of its width.

In both cases the SVM used more or less 10% of the learning data as support
vectors. Both models predict the learning set fairly well, but fail to predict the test

90 CHAPTER 5. GENERALISATION ABILITY

SVM'’s using Polynomial (Test Data)
140 T T T T

Degree 3
1201 | ‘ J
I I , |Degree 2
| [/
100 | | ’ 7
| | 7
| | /
80 | | 4 B
Degree 2 | |
Degree 3 | |
60[| I }
| |
o . le
2007 L i
Degree 1 T
Degree 4 B
Degree 5 20
Degree 1
0 4
5
=3
3 -20 g
> Degree 5
(%]
e
—40 4
Degree 4

-60

test x input

Figure 5.8: SVM predictions of the test set, using polynomial kernels of various
degrees.

set outside the known range accurately. Increasing the number of support vectors will
not necessarily improve the predictive power of the model, since there is a threshold
of the number of support vectors with respect to generalisation ability. If too many
support vectors are used, the model is overfitting and models noise as well. The
resulting predictions of the test set will actually become worse. Furthermore, the
intrinsic complexity of the data is fairly low and does not need the use of more
support vectors. In fact, the number of support vectors can be decreased to less than
5%, but at the expense of accurately predicting the sharp turning point in the data
around the ratio of 0.5.

In Figure 5.11, the mixed kernel approach is shown. From the analysis of the
kernel parameters it is found that an appropriate choice for kernel parameters is a
second degree polynomial, combined with a RBF of width 0.15 and mixing coefficient
of 0.98. In Figure 5.11, the model is displayed. The top graphs shows the prediction of
the learning set well as the e-insensitive tube and support vectors (encircled points).
The bottom graph depicts the prediction of the test set. The number of support
vectors used is also in the region of 8% of the learning data. The model of the mixed
kernel is able to interpolate the sharp turning point of the learning data as well as
extrapolate outside the known input space.

Although this example is only one-dimensional, the mixed kernel approach was
also applied to higher dimensional problems and similar generalisation performance

5.5. CONCLUSION 91

SVM'’s using RBF (Learning Set)
45 T T T T T T T T

y output

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X input

Figure 5.9: SVM prediction of Learning set, using RBF kernels of various widths.

improvements were found.

5.5 Conclusion
Let us state the original design requirement again:

The inferential sensor is required to predict unseen data in regions of low
data density in the known input space as well as regions that are outside
the known input space.

It was shown in this chapter that, where the RBF kernels fail to extrapolate and a very
high degree polynomial kernel is needed to interpolate well, the mixture of the two
kernels is able to do both. Furthermore, a model that interpolates and extrapolates
well can be built using a single choice for each of the kernel parameters.

Having the ability to both interpolate and extrapolate well, now opens the door
for making use of prior information, which is one of the design requirements. If, for
example, the asymptotic behaviour of a process is known from fundamental models,
this information can be used as prior information. The SVM using a mixture of

92

70

60

50

0=05
0=0.3
c=04
0=0.2

test y output

SVM's using RBF (Test Data)

T

T T

CHAPTER 5. GENERALISATION ABILITY

0=05
0=0.3

~10=04

=02

14

test x input

Figure 5.10: SVM predictions of the test set, using RBF kernel of various widths.

kernels then will not only be able to learn from the data but also take into account
the behaviour of a process in the limit. This design issue will be address in Chapter

7.

Further investigation needs to be done into why only a very small percentage of
the RBF kernel is needed. Other interesting questions remain also, like how could
the performance be improved by using local density related values for the mixing
coefficient in different regions of the input space. There are of course other kernels
that could be used for mixing. For example, mixing several RBF kernels may be
useful for problems with a nonuniform data density in the input space [111].

5.5. CONCLUSION 93

e-Insensitive SVM (Learning Set)
50 T T T T T T T T T

Learning Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(e = 5.000)
e-Insensitive SVM (Test Set)

70 T T T T T

50
40

Test Output

201
101

0
-0.4 1.6

Input

Figure 5.11: SVM using mixture of polynomial kernel of degree two, an RBF kernels
of width 0.15 and a mixing coeflicient of 0.98.

94

CHAPTER 5. GENERALISATION ABILITY

Chapter 6

Data Compression and
Outlier Detection

6.1 Introduction

The quantity of data being generated in chemical plants increased tremendously in
the last decade. In contrast to fifteen years ago when there were never enough data,
the size of data sets today are becoming unmanageable. In fact, the following has
been said [13].

...companies today are manipulating data in the terabyte (ome trillion
bytes) to pedabyte (one thousand terabytes) range. If bytes were raindrops,
that would be enough to float the QEIL

One could argue that in time the increasing speed and memory capabilities of com-
puters would solve the problems involving data management. However, the amount
of data gathered increases probably at the same rate as the speed and memory of
computers, maybe even faster. Therefore, the problem will remain. Compressing
data sets without loss of information is an essential capability for modern modelling
tools [14]. Reducing the size of a data set requires the removal of redundant data.
That is remove duplicate data or data that does not add any new information to the
data set [14].

Another issue that also involves the removal of data points is the detection of
outliers. OQutliers are unusual data points that are not consistent with most of the
data points [11]. Since in the design requirement on robustness the inferential sensors
were made insensitive to outliers, it would appear that outlier detection is not required
anymore. However, outliers often contain useful information on abnormal behaviour of
the process described by the data [1]. Consequently, outlier detection still needs to be
done in order to fully understand the behaviour of the processes under consideration.

Many data compression and outlier detection methods exist. However, there is
an increasing awareness that most of these approaches are distance- or density-based
which make them inappropriate for high-dimensional data [1],[98]. The reason for this

95

96 CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

has been linked to the curse of dimensionality and in particular with Property 4 in
Chapter 3. Recall that Property 4 states that in high-dimensional spaces almost every
point is considered to be an outlier. Therefore in recent years scientists expressed the
need for model-based approaches [85],[48].

It has been observed in the SVM literature that the SVM may be used for detecting
outliers [11]. The SVM’s robustness with respect to outliers, as shown in Chapter 4
and the fact that the outliers are part of the support vector set makes it potentially
suitable to use as a model-based outlier detection method. In [99] it was shown
how SVMs for classification can be used to detect outliers. To our knowledge there
has not been extensive research in applying SVM for regression in outlier detection
applications.

Another observation made by a number of researchers is that the SVM’s ability to
represent the model in terms of the support vectors could be used for data compression
purposes [87],[10],[106],[107]. The use of SVMs for classification for data compression
was discussed in [76]. The potential of using SVMs for data compression in inferential
sensor applications has also been noted in [22]. However, little research has been done
to investigate these claims for the regression case.

In this chapter of the design thesis we explore the use of SVMs for performing
outlier and redundancy detection tasks. In the first section we present an approach
to perform outlier detection. Inverting the reasoning presented in the first section,
the approach can be used for redundancy detection purposes, which is discussed in
the second section.

6.2 Outlier detection

Consider the dual form linear e-SVM from Chapter 2,

¢ ¢
maximise Z yi (o] —oy) —€ Z (af + a;)
i=1 =1
1
—5 Z (of — ;) (a; — a;) K(x;,%;), (6.1a)
i,i=1
¢
subject to Z (af —a;) =0, (6.1b)
=1
« . C :
0 <oy, S?’ i=1,...,L (6.1c)

In Chapter 4 it was shown that the linear e-SVM, i.e. the e-SVM using the linear
e-insensitive loss function, remains virtually unaffected by the presence of outliers
even though the outliers are part of the set of support vectors. The reason for this
is that the Lagrange multipliers obtained by solving (6.1) are upper bounded by
constraint (6.1c). In fact, all support vectors that are not strictly on the e-insensitive
zone, including the outliers, will have an absolute value equal to the upper bound.
Therefore, if outlier detection was to be performed by the SVM one would have to

6.2. OUTLIER DETECTION 97

inspect the values of the Lagrange multipliers and in particular those that hit the
upper bound in (6.1c).

Consider the constraints on the Lagrange multipliers in (6.1c). The Lagrange
multipliers a; and af are bounded from above by C/¢, where C is the regularisation
parameter. In optimisation theory it is a well-known fact that a positive Lagrange
multiplier indicates that the corresponding constraint in the primal formulation of a
QP problem is active at the optimal solution [17],[51], [6]. If the Lagrange multiplier’s
value hits the upper boundary, it means that in the case of SVMs the observed data
point lies outside the e-ingensitive zone and consequently has a positive slack variable.
If the corresponding slack variable £ (or £*) has a large value the data point in question
is far outside the e-insensitive zone. Therefore, Lagrange multipliers with upper bound
values as well as large slack variable values indicate unusual data points and can be
considered as possible outliers.

Of course, based on a single model, one cannot conclude that a data point is a
possible outlier for one would then rely heavily on the quality of a particular model.
Several models of varying complexity should be constructed. For each model a data
point is identified as a suspected outlier if it has a Lagrange multiplier value close to
the upper boundary and its corresponding slack variable is large. We consider the
slack variable to be large if it is larger than 0.5 times the standard deviation of the
predicted output values. Next we determine the number of times that a data point is
suspected to be an outlier and plot the frequency of suspicion at increasing rates.

Consider for example the data set in Figure 6.1. The data set is the same one used
to illustrate the robustness of the SVM in Figure 4.1 of Chapter 4. Given the data in
Figure 6.1, an RBF kernel with ¢ = 0.2 and C = 500, the approach described above
was followed and in Figure 6.2 the obtained frequency information is plotted. Figure
6.2(a) shows per iteration which data points are suspected to be outliers. In Figure
6.2(b) these frequency rates are plotted in increasing order. Note the sharp increase
in the frequency at the tail of the detection rate. In our research we observed that
this is characteristic for data sets where there are outliers present. The predictions of
the corresponding SVMs as well as the detected outlier are shown in Figure 6.3. The
various SVMs behave differently in the proximity of the outlier. After removing the
detected outlier, the procedure is repeated until no outliers are detected anymore or
the various SVM have the same predictive capabilities. This predictive capabilities is
measured using for example the RMSEP error measure. If the standard deviation in
the RMSEP values of an iteration is small, the various SVMs have equal predictive
capability indicating that no large errors are present anymore. In Figure 6.4 the
frequency plots after five detection iterations are shown. Note that the curve in
Figure 6.4(b) is almost a straight line. There is no sharp increase in frequency at the
tail of the detection rate. The increase is therefore only due to the shrinking of the
e-insensitive zone. In Figure 6.5, it is clear that the SVMs have the same behaviour
and the standard deviation of the RMSEP values is therefore quite small. The outliers
detected following the procedure described above can be seen in Figure 6.6.

It is assumed that the data set has a reasonable noise level so that the true
outliers are not masked by noise. Furthermore, one should remember that as outliers
are unusual data points it is expected that there are only a few outliers present.

Next we give the algorithmic pseudocode of the outlier detection procedure dis-

98 CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

12 T T T T T T T T T

0.8+ . . . o . * A

0.6 _— h . .

Output Data

04k . - B

02F - .]

|
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Data

-0.2
0

Figure 6.1: Example 1 of Chapter 2 with added outliers.

cussed and illustrated above in Algorithm H.

Algorithm H. Outlier Detection

Step 1: Select the learning data (x;,y;),7 = 1,...,¥£, kernel function K
and C.

Step 2: Determine maximum e for which support vectors exist:
set v = 0.01.
run Algorithm C
set sv_num = length(SV)
set eemar = €
repeat until sv_num = 0,
set v =v +0.05
run Algorithm C
set sv_num = length(SV)
set eemar = €
end

Step 3: Set it_num = 20.

6.2. OUTLIER DETECTION

Suspected Outliers

2':' T T T T T
=
=
E 1I:I_ } ii _
x . .
D:..lﬁ | HIET T N .iil,..i mEn
0 20 4an G0 a0 100
ia) Index
20 T T T T T T

Frequency
=]

I:I 1 1 1 1
ib) Increasing Detection Rate
Figure 6.2: The frequency of suspected outliers.
=WM Predictions (StdiRMEEP) = 0.0364)
1.2 T r T T

Detected Cutlier

0.2 '
0 0z 0.4 06 0.8 1

it

Figure 6.3: Predictions of various SVM models and detected outlier.

CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

Suspected Outliers

e B g, i b ¢

100
(a) Index

(b Increasing Detection Rate

Figure 6.4: The frequency of suspected outliers after five iterations.

100
20
|y
=
w= 10
z
1]
20
= 15
()
=
%10
pay
x
L 5
0
Step 4:
Step 5:
Step 6:

Step T:

Construct vector € consisting of it_num values linearly distributed
from 0 to e_maz.

Set outlier index matrix Qut_I as an £ x it_num matrix of zeros.

For k = 1to it_num

run Algorithm B using e(k)
identify possible outliers indexes as:
I={ilw;=%,i=1,...,£}
for i = 1to £
calculate §(7) = fup(x;).
calculate the errors as: £(i) = y(i) — §(4)
end
calculate the standard deviation o of &’s
identify indexes of large errors as:
L= {il¢(i) > 30,5 € I}
set suspected outlier indexes set as: S=INL
set Out_I(S,k) =1
calculate the RMSEP value for the predictions:
R(k) = RMSEP(y,7)

Calculate frequency of indexes in Qut_I:

6.3. DATA REDUCTION 101

SWM Predictions (Std(RMSEP)=0.0096)
1.2 : : : .

Input

Figure 6.5: Predictions of various SVM models after five iterations.

fori=1to ¥
Freq(i) = Y.5_, Out I(i, j)
end

Step 8: Calculate the largest frequency: M _Freq = max; Freq.

Step 9: Determine the standard deviation of the RMSEP values: S =
std(R).

Step 10: If M_Freq > 15 and S < 0.01 then
outlier = {i|Freq(i) = M _Freq,i=1,...,¢}
remove x(i) and y(7) from data set
return to step 2 using the reduced data set
else
stop
end

6.3 Data reduction

For redundancy detection, we invert the reasoning followed in the outlier detection
approach. Now we make use of the fact that those vectors that contain information

102 CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

1.2 T T T T T T T T T
1 i
08r Iteration 5]
e
® .o
s 0.6 .. ® i
8 Iteration 3 ’
5 Iteration 4
[=R
‘5‘ .
O o04f . - i
o .
Iteration 1
0.2 b
®©
Iteration 2
or i
_02 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Data

Figure 6.6: Detection of outliers in five iterations.

are identified by the SVM method as support vectors. Therefore, in order to detect
data points that are redundant, one has to inspect the non-support vector data points,
i.e. the data points with zero weights.

Consider the last constraint (6.1c¢) in the dual formulation of the SVM problem in
(6.1). The Lagrange multipliers a; and a are bounded from below by 0. Recall that
the Lagrange multipliers indicate whether the corresponding constraints of the primal
formulation of a QP Problem are active or inactive at the optimal solution. A zero
Lagrange multiplier value indicates that the constraint is not active at the optimal
solution. Note that each data point has two constraints in the primal formulation:
One for when the data point lies above the approximating function and one for when
the data point lies below the approximating function. Thus there are two Lagrange
multipliers, o; and of, associated with data point ¢. However, both the constraints
cannot be active at the same time since a data point cannot lie above and below the
approximating function at the same time. Therefore both the Lagrange multipliers
cannot be non-zero at the same time either. A non-support vector data point is
therefore a data point for which both Lagrange multipliers are zero at the same time.
Such a data point may be considered as a possible redundancy, since according to the
model it does not contain information necessary for the model to used when predicting
an unseen data point.

6.3. DATA REDUCTION 103

Again, one should not conclude from a single model that a data point is in fact
redundant. Therefore, several models with varying complexity need to be constructed
to determine whether the data point is consistently not needed as a support vector.
For each model the Lagrange multiplier values are inspected and if both Lagrange
multiplier values of a data point are zero the data point is identified as a possible
redundant point.

Next we determine the frequency at which a data point is suspected by the various
models to be redundant. The higher the frequency, the more likely it is that the data
point in question is in fact redundant. However, in our research we observed in the
plot of the frequencies a characteristic curve which levels off for increasing detection
rates. An example of this phenomenon can be seen in Figure 6.7(b) where we used
the example in Chapter 2 and constructed various SVMs using an RBF kernel with
o = 0.2 and C = 200. Unlike in the outlier detection approach, the redundancy

Suspected Redundancy

[teration

P

Gl

Fregquency
=]

m

o]

ib) Increasing Detection Rate

Figure 6.7: The frequency of suspected redundancy.

detection does not identify a single data point per iteration to be removed. That
would be a very time consuming procedure. A larger number of data points can be
identified at once by using the point where the redundancy frequency levels off or
almost remain constant. All data points with frequencies equal or larger than the
determined level are identified as redundant data points. In our example the level
was determined to be 16 as indicated in graph (b). Also shown is the number of
data points and percentage of data points this level identifies as redundancies. In
Figure 6.7(a), the suspected redundancies per iteration are shown and the identified
redundancies are indicated as well. In Figure 6.8 the predictions of the different SVM

104 CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

SVM Predictions (Std(RMSEF) = 0.0424)
1.2 : . : .

Input

Figure 6.8: Predictions of various SVM models and detected redundant data points.

models are shown and the detected redundant data points are encircled as well.

One precautionary remark on applying the technique recursively. Removing all
non-support vectors could seriously affect the data density of the input space and
consequently the smoothness of the subsequent SVM. Furthermore, in the presence of
large noise levels and some unknown outliers, removing all non-support vector data
points would leave a data set which is largely determined by the noise and outliers.
In turn, rebuilding a SVM based on such a data set could lead to a worse model.

Algorithm I. Redundancy Detection

Step 1: Steps 1-4 of Algorithm H.

Step 2: Set redundancy index matrix Red_I as an £ X it_num matrix of
ZET08.

Step 3: For k=1 to it_num
run Algorithm B using e(k)
identify possible redundancy indexes as:
I={ilw;=0,i=1,...,¢}
set Red I(I,k)=1
end

Step 4: Calculate the frequency of indexes in Red_I:

6.4. INDUSTRIAL EXAMPLE 105

fori=1to/
Freq(i) = Y.¢_; Red I(i, §)
end

Step 5: Calculate the largest frequency: M _Freq = max; Freq.

Step 6: If M _Freg> 10,
determine point where the frequency levels off:
sort Freg(i) in increasing order
calculate frequency f with longest sequence of constant frequency
set cut-off level: cut of f = f
find indexes of redundancies:
index = r = {i|Freq(i) >=cutof f,i=1,...,£}
remove x(¢) and y(¢) from data set
repeat Steps 2-10
else
stop
end

6.4 Industrial example

We show the efficiency of the SVM based redundancy detection on the same industrial
example used in Section 5.4 of Chapter 5. In Figure 6.9 the frequency information
is given. Note the characteristic levelling-off of the frequency for increasing detection
rates.

In the first iteration a total of 84 data points were removed. A second iteration
removed 108 data points. The third and final iteration removed 192 data points.
The reduced data set after each iteration can be seen in Figure 6.10. The predictive
capability of a SVM using the same parameters but based on a reduced data set is
given as well. Note the the data set can be compressed to less than 50% of its original
size without loosing any predictive capabilities.

6.5 Conclusion

Let us consider the design requirement again:

Applications such as redundancy detection and outlier detection are im-
portant requirements of the development of inferential sensors.

The traditional approaches for outlier and redundancy detection are distance or den-
sity based. Recently it has been argued that such approaches are often unsuitable
for high-dimensional data. Therefore in recent years scientists expressed the need for
model-based approaches.

It has been observed by many that the SVM method could be used for detecting
outliers as well as data compression. This is because the SVM method identifies

106 CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

Suspected Redundancy

[teration

20

Frequency
o m

m

o]

(b Increasing Detection Rate

Figure 6.9: Frequency rates for industrial data set.

specific learning data points of interest that are then used to define the model. The
SVM method has therefore the unique property that the magnitude of the weights
can be used to identify outliers and redundancy. In this chapter we investigated the
possibility of using the characteristics of SVMs as a basis for model-based outlier
detection and redundancy detection approaches.

In the approach for outlier detection, we consider a data point to be a possible
outlier when its corresponding Lagrange multiplier values hit the upper boundary of
the constraint and it has a large error. A data point is identified as an outlier if it is
repeatedly selected as a possible outlier by various SVM models. After removing this
outlier, the procedure is repeated until no more outliers are identified. The algorithmic
pseudocode for the outlier detection based on SVMs is given in Algorithm H. We also
illustrated in an example the effectiveness of the proposed approach.

The redundancy detection approach inverts the reasoning of the outlier detection
approach. Only now data points with weights that are repeatedly zero are suspected
to be redundant. A data point will be considered as redundant when its frequency
lies above the level where the frequency rate levels off. Therefore data points that are
almost never used as support vectors by various SVM models are considered to be
redundant. In Algorithm I the algorithmic pseudocode for the redundancy detection
based on SVMs is given and applied to an industrial data set which was compressed
to less than 50% of its original size without loss of quality in the model.

Finally, using the approaches presented in this chapter the inferential sensor is
able to comply with the design specification as stated.

6.5. CONCLUSION

(a) 627 data points.

Output Data
[[N N w
o o1 © O

o

ol

Output Data
= [N N w
o 01 O O

(&)}

31% sv's -

0.95

1 1.05
Input Data

(c) 437 data points.

o

46.5% sv's

0.95

1 1.05
Input Data

107

(b) 545 data points.

27% sv's

0.95 1 1.05
Input Data

(d) 245 observations.

- 89% sv's

0.95 1 1.05
Input Data

Figure 6.10: Compression of an industrial data set in three iterations.

108 CHAPTER 6. DATA COMPRESSION AND OUTLIER DETECTION

Chapter 7

Incorporate Prior Knowledge

7.1 Introduction

As processes get more complicated and more research is being done on these processes,
more information about the physical laws, constraints and conditions are becoming
available. Any information about the learning task that is available in addition to
the learning data is considered to be prior knowledge. Generally speaking, it is only
possible for data-driven models to generalise from the training data to unseen test
data if prior knowledge was included during the learning process [65]. Therefore, the
new generation of inferential sensors should not only be built on empirical data but
also incorporate any other available information.

The incorporation of prior knowledge has been the object of research in many
fields. The easiest way to incorporate human knowledge is through fuzzy logic
[113],[114] and rule-based systems [14],[95]. The systems strongly depend on a priori
knowledge and are aimed at providing a model with modes of human reasoning that
are approximate rather than exact [39],[95]. However, successful fuzzy applications
are limited to rather low-dimensional models [11].

Unfortunately, incorporating prior knowledge or information in data-driven mo-
dels is not easy [91]. There are various kinds of prior knowledge to be considered
[78]. One well-known form is feature selection. Here knowledge about the correlation
between dimensions is used to extract those features that cause the observed variation
[11]. Knowledge about the probabilistic models generating the data can be incorpo-
rated into the kernel as is done in Fischer kernels [30]. Another form is by making use
of smoothness assumptions of the problem [92]. For example a Bayesian maximum-
a-posteriori setting which corresponds to a smoothness prior of exp(— ||yf||°). Prior
knowledge could also be considered as knowledge of certain transformations of the in-
put data known to leave the function values unchanged. This type of prior knowledge
is known as invariance information and mainly applicable for image processing [77],[8].
A full discussion can also be found in [78]. Often the user wants an understandable
model. Learning machines like NNs and SVMs lack the ability to present the model
in a closed-form formula. However, this problem can partly be solved through semi-
parametric modelling where a linear combination of specific parametric components

109

110 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

is added to the objective function. This requires prior knowledge about the likelihood
of specific parametric components to be part of the solution [78].

All the forms of prior knowledge mentioned above require either some knowledge
of the probabilistic nature of the problem or the interdependency of the variables.
Often in chemical plants neither are available. What is available is the boundary
conditions for processes, information about the varying levels of noise in the input
space and the sensitivity of the variables.

In this chapter three forms of prior knowledge frequently encountered in the che-
mical industry are investigated. In the first section the incorporation of boundary
information is considered. This type of information is only useful if the resulting
model is able to extrapolate well. The second section investigates the incorporation
of sensitivity analysis information obtained from the dimensionality reduction step
for multi-dimensional scaling purposes. This approach takes feature selection one
step further. After the relevant features are selected, the sensitivity of the relevant
features are taken into account. Finally in the third section, a procedure for dealing
with heteroscedastic noise is discussed. Normally, it is assumed that in Support Vec-
tor Regression the size of the tube remains constant throughout the input space and
therefore, it is also assumed that the noise level remains constant. By varying the
size of € the tube can take an arbitrary shape.

7.2 Boundary information

From physical laws and constraints information about the behaviour of a process at
the boundaries can be derived. The idea is to make use of this information during
the learning process in order to build more intelligence into the resulting inferential
sensor. The challenge is how to present the information to the learning machine. Since
many of the learning methods learn from a set of data points, the obvious solution is
to create observations that reflect the boundary conditions.

These artificially created observations are expected to be outside the input space
of the actual observations. Therefore, it is to be expected that the learning machine
will have to extrapolate between the true observations and the supplied boundary
information. To make use of the extra information available, the resulting model
must have a good generalisation ability. This is where the mixed kernel approach for
support vector machines becomes very useful, for it is able to fully exploit the prior
information added to the set of observations.

Adding prior information into the kernel in the form of boundary conditions of the
input data increases the performance of the mixed kernels even more. To demonstrate
this, we added boundary conditions by supplying the SVM with only two points, each
on the edge of the input space.

In Figures 7.1 and 7.2 we show the performance of polynomial kernel SVMs and
RBF kernel SVMs using prior knowledge. We see that in both cases the SVMs are
much better. However, there is still no single kernel parameter for either polynomial or
RBF kernels that will result in a model with both good interpolation and extrapolation
abilities.

In Figure 7.3 the performance of the mixed kernel is given. Although it is not right

7.3. MULTI-DIMENSIONAL SCALING 111

Output y

21 ' ..4| - Data
i — ¢g=10
: - =15
15} | 1= g=20
. ! - - =25
2 1! .
5 I
© |
0.5f | B
! o
ofeT ‘ 4
-1 -0.8 1

(b) x

Figure 7.1: Polynomial kernels with Prior Information (a) for degrees ¢ = {1, 2, 3,4}
(b) for degrees ¢ = {10, 15, 20,25}.

on the mark, it is still much better in terms of the balance between interpolation and
extrapolation performance.

We see that using prior knowledge increases the generalisation ability of all SVM
models. Other forms of prior knowledge incorporation are discussed in [77].

7.3 Multi-dimensional scaling

The kernel value of a typical kernel function is the inner product of two n-dimensional
vectors x and z and is determined as

n

K(x,2) =Y 0(x:) - 0(z). (7.1)

=1

In the kernel function in (7.1) each dimension has equal importance and contribute

equally to the kernel value. In real life problems, this assumption may be invalid.
One way to address this is to assign a weight to each dimension. Thus giving

the dimensions a relative importance with respect to each other. Fortunately, the

112 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

Data
— 0=0.01
. 0=0.05
c—. 0=0.1

Output y

Data
— 0=0.15
- 0=0.20
-—. 0=0.25

Output y

(b) x

Figure 7.2: RBF kernels with prior information (a) for widths of ¢ = {0.01,0.05,0.1}
(b) for widths of o = {0.15,0.2,0.25}.

formulation of the kernel function can easily be altered such that a weight is assigned
to each dimension. For a given set of weights

W= (W1, W2, ,Wn), (7.2)

a weighted kernel function can then be written as

K(x,z) = Zwi(o(%‘) -8)(2i), (7.3)

Each weight thus scales the corresponding dimension’s contribution to the kernel
function. Such an approach we define as multi-dimensional scaling !.

Information obtained from sensitivity analysis of the input dimensions can be
used in the support vector machine to perform multi-dimensional scaling. Sensitivity

I'There is a difference between our definition multi-dimensional scaling and the mulitivariate
statistical method MDS. In multivariate statistics MDS is a technique that is designed to construct
a ‘map’ which shows the relationships between a number of objects, given only a table of distances

between them [52].

7.3. MULTI-DIMENSIONAL SCALING 113

Output y

Figure 7.3: Mixed kernels with prior information of first degree polynomial, o = 0.05
width of RBF and p = {0.5,0.6,0.7,0.8,0.9,0.95,0.99}.

analysis of the input dimensions is usually used to determine which dimensions are
relevant to the problem [14]. For multi-dimensional scaling purposes, we use the
sensitivity of the input dimensions as an indication of the relative importance of each
dimension. In industry stacked NNs or GP are used for sensitivity analysis [41]. In
practice the stacked NN approach is faster and the results are better reproducible
[85].

The values of the weights are often percentages or ratio’s. In order to retain the
original kernel formulation for instances with equal weights, the weights should first
be normalised such that Y | w; = n. The normalisation is done using

(7.4)

To show the advantage of using multi-dimensional scaling, we use a six-dimensional
industrial data set. In Figure 7.4 the output data of the learning data, indicated
by a dot, as well as the test data, indicated by a plus, is shown for each dimension.
The input data were range scaled to [0,1]. Note that the test data differ in several
dimensions from the learning data. Therefore, any model resulting from the learning
data will have to extrapolate when predicting the test data.

114 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

Input Space for Learning Data (Jand Test Data (+) in each dimension

1.4 15 15
1.2
1 1 1
0.8
> H > >
0.6)
0.5 0.5
0.4 1 i iﬁ
0.2 I * T
0 0 0
0 05 1 0 0.5 1 0 0.5 1
(c) x
(@)%, (0) x, 3
1.4 1.4 1.4
12 1.2 1.2
1 1 1
. 08 S . 08 . 08
0.6) 0.6) 0.6
: | : ,
0.4 : : 0.4% 0.4 '% +¢
4 +#
0.2 : : 0.2% 02 . 2
0 0 0
0 05 1 0 0.5 1 0 0.5 1
@ x, ©x, M x,

Figure 7.4: Input space of data with respect to each dimension.

The weights w = (0.3,0.44,0.72,1, 0.5, 1) were obtained from a NN sensitivity analysis
of the input dimensions. Three types of kernels, namely RBFs, polynomials and a
mixture of RBFs and polynomials, were used. The optimal settings for the kernel
parameters, € and C' were then obtained using Algorithm D and the L-curve method,
respectively. In Table 7.1 the parameter settings used in the different SVM models are
given, as well as the percentage support vectors. The RBF kernel needed a o-value
of 1.0 to be able to predict the test data. Since the input data were range scaled to
[0,1], a RBF kernel with o = 1.0 represents a global kernel that takes into account
all data points in the learning range. That confirms that the resulting model will
indeed have to extrapolate in order to predict the test data. In each case where the
multi-dimensional scaling was used, the number of support vectors decreased.

Next we investigate the effect on the performance of the SVM models with and
without the use of multi-dimensional scaling for the different kernel functions. In
Figure 7.5 four statistical measures are used to show the effect of multi-dimensional
scaling. These measures are the correlation coefficient, standard deviation, relative
error and R2-statistic. The statistical performance of models built using three types
of kernels (RBF, polynomial and a mixture of the two) are compared. The graphs

7.3. MULTI-DIMENSIONAL SCALING 115

Table 7.1: Parameter settings and the percentage support vectors.

Kernel Kernel € C | Sensitivity %
Function Parameters Used SV’s
RBF oc=1.0 0.05 | 156 No 51.6
RBF oc=1.0 0.05 | 156 Yes 40.3
polynomial d=2 0.05 | 2 No 43.5
polynomial d=2 0.05 | 3 Yes 40.3
mixture p=0.88 0.05 | 2 No 33.9
(poly,RBF) | d =2,0 =04,
mixture p=0.88 0.05 | 2 Yes 30.6
(poly,RBF) | d =2,0 =04,

Learning Data Test Data
g 1 g 1
2 k)
2 °
g g I I
& 05 8 05
O (]
5 S
(@] 0 o 0
RBF Poly Mixed RBF Poly Mixed
0.06 0.06
c c
2 S
g 004 & 004
> >
[[0
2 o002 2 002
B2 2
@ 0 ® 0
RBF Poly Mixed RBF Poly Mixed
0.4 1
5 5
w i
g o2 2 05
g =
[} [0)
© 0 « 0
RBF Poly Mixed RBF Poly Mixed
1 1
L2 2
k7]
IS <
7 05 # 05
NI NI
o Jad
0 - 0 :
RBF Poly Mixed RBF Poly Mixed

||:| Equal Sensitivity - Weighted Sensitivity

Figure 7.5: Effect of multi-dimensional scaling on the error statistics of SVMs of
different kernel functions.

also show the difference in performance between the learning and test data. The
error statistics for the learning data are shown on the graphs to the left and those for

116 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

the test data are shown in the graphs on the right. The white bars show the error
statistics of the models using no multi-dimensional scaling, whilst the grey bars show
the error statistics of the models using multi-dimesional scaling. From the figure one
can see that the performance of the model in predicting the learning data slightly
improves when multi-dimensional scaling is used. The positive effect of using multi-
dimensional scaling is more evident in the performance of the model using the test
data.

{a) Learning Data without sensitivity (b Learning Data with sensitivity

1.4 = 2
™ . = 'L . . .
=R R4 . = . s
W 2] o
< gsf L0 T A R NP IRE
- - . .
3 ’ B T
"E] * - -§ LI
z ‘. . g0 = .
S 05; -« = .
& Y . in ‘.,
1 dadk w e R -
a 0.5 1 1.5 0 0.5 1 1.5
Response Response
(c) Test Data without sensitivity (d) Test Data with sensitivity
2 3 <
T ™
= * = NN
w 1 * W 2 - -
o L4 e i)
[y L] - cr -
Bo—r 3 S
= = . .
= . .] . .
ER . ER
i i .t
E Ea .
-2 -1
a 0.2 0.4 0.6 0.5 0 0z 0.4 06 0.3
Response Response

Figure 7.6: Effect of multi-dimensional scaling on the standardized residuals of SVMs
using the RBF kernel.

Finally, we show the effect that multi-dimensional scaling has on the standardized
residuals for the three types of kernels in Figures 7.6, 7.7 and 7.8. In al three figures the
graph (a) shows the standardized residuals of the prediction of the learning set using
the model without multi-dimensional scaling. The Graph (b) shows the standardized
residuals of the prediction of the learning data using the model with multi-dimensional
scaling. Graph (c) depicts the residual of the test data predicted by the model without
multi-dimensional scaling. The last graph, Graph (d), in each figure plots the residual
of the test data predicted by the model using multi-dimensional scaling. Note that
in all three cases the residuals for both the predictions of the learning and test data
becomes more balanced and evenly spread when multi-dimensional scaling is used
during the modelling. Based on the observations supplied by the error statistics,

7.4. VARIABLE € 117

{a) Learning Data without sensitivity (b Learning Data with sensitivity

i e
L)

.-n‘o
M
L]
-

an® .
ooooﬁo.

Standardized Residual
)
Standardized Residusl

b

“n 05 1 15 “D 05 1 15

Response Response
(c) Test Data without sensitivity (d) Test Data with sensitivity

Standardized Residual
Standardized Residusl

_2] _2
o 0.2 0.4 0.6 0.g 0 0z 0.4 0B 0.8

Response Response

Figure 7.7: Effect of multi-dimensional scaling on the standardized residuals of SVMs
using the polynomial kernel.

one can see a tendency that both the learning ability of the learning data and the
predictive cabability of the unseen test data is improved.

7.4 Variable ¢

In classical SVM for regression it is assumed that the size of the tube remains constant
throughout the input space. That means that it is implicitly assumed that the noise
level remains constant throughout the input space. In industrial data sets this is not
necessarily the case. Often some information about the dependency of different noise
levels in the input space is known.

The SVM for regression can easily deal with this type of information by varying the
size of € such that the width of the tube can take a shape corresponding to the different
noise levels [74],[78]. In the standard e-SVM for a given vector € = €1,. .., €, the QP
problem is as follows.

118 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

{a) Learning Data without sensitivity
2

T
_g - " - . .
& 1 s * .t
o -
o - LY »
- -
B o=
s
= o
_g 1 LX) .&'..
[
A
-2
a 0.5 1 1.5
Response
(c) Test Data without sensitivity
1
s
_g * -
=1} -
o w s
E -1 . -
= -
T
E -2 .'o
L% -
3 *

o 0.z 0.4 06 0.
Response

Standardized Residual

Standardized Residusl

2

{b) Learning Data with sensitivity

R - -

0 0.5 1 1.

Response
(d) Test Data with sensitivity

0 0z 0.4 0B 0.8

Response

Figure 7.8: Effect of multi-dimensional scaling on the standardized residuals of SVMs

using the mixed kernel.

C

¢
1
minimise §||W||2 + 7 ;(& + &),

subject to ((w,x;) +b) —y; <€ + &, i=1,...,4,
yi — ((w,x) +b) <+ &, i=1,...,¢

fzaf: Z 07

i=1,...,L

(7.5a)

(7.5b)
(7.5¢)
(7.5d)

Again through introducing Lagrange multipliers, finding the saddle points of the

7.4. VARIABLE € 119

Lagrangian and writing the Wolf Dual problem, we get

£ £
maximise Z yi (af —ay) — Z € (o + ;)
i=1 i=1
1 &
-5 D (af —) (0 — o) K (xi,%;), (7.6a)
i,j=1
£
subject to Z (of —ay) =0, (7.6b)
i=1
Ogai,afgi, i=1,...,L (7.6¢)
The best approximating function or model still has the form
£
FE) =) (0 —) K(xi, %) +b, (7.7)
i=1

where b is the determined bias.

To show the advantage of using a variable € value, we use the industrial example
in Section 5.4 of Chapter 5. In Figure 7.9(a), predictions of the data are shown using
a SVM with constant € set at 5, C = 15000 and a mixture of a RBF of width 0.15
and polynomial kernel of degree 1, and a mixing coefficient of 0.98. In graph (a) of
Figure 7.9 there is noticably less data in the region between 0.4 and 0.6. It is clear
that majority of the data points within this region lies below the model. However,
by decreasing the value of € in this region the model can be forced to go through the
lower points. In a simple implementation we use € values of 2 in the region between
0.4 and 0.6 and elsewhere 5. Figure 7.9(b) shows the predictions of the data using
different values for €. The model now clearly fits the data within this region better.

In practice it might be a problem to determine the vector of € values. A more
appropriate approach may be to use a function of the noise instead in addition to the
v-SVM [78].

Let {,g*) with K = 1,...,p be a set of 2p positive functions on the input space X.
For given v}, ...,v; > 0, the QP problem is

e . 1 2 ? * K 1 : *
minimise §||w|| +C- (; (vper + vier) + 7 ; &+¢)) , (7.8a)
P
subject to ({(w,®(x;)) +b) —y; < ZGka(Xi) + &, i=1,...,4, (7.8b)
k=1
P
yi — ((w,@(x:)) +0) < > _exGr(xi)+&, i=1,...,¢ (7.8¢)
k=1
€9 >0, i=1,..., (7.8d)

>0, k=1,..,p (7.8¢)

120 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

(a) Constant €

50 T T T T T T T T T
i Data
40| —— Prediction SVM B
. insensitive zone

o
< 30
[a}
820
3
(@]
10
or i
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Data
(b) Variablee
50 T T T T T T T T T
Data
40 —— Prediction SVM B
. insensitive zone :
30"

o]
©
o
320
5
(@]
10 :
H
ot =5 =2 e=5 -
I I I > I L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Data

Figure 7.9: Example of the advantage of using variable e values.

Again through introducing Lagrange multipliers, finding the saddle points of the

Lagrangian and writing the Wolf Dual problem, we get

¢ ¢
maximise — % Z (af — as) (o — aj) K(xi,%;) + Z (af —a
ii=1 =1
¢
subject toz (af —a;) =0,
=1
0<al® > % i=1,...,0,

£
Yol <0, k=1...p
i=1

) Yi, (793’)

(7.9b)
(7.9¢)

(7.9d)

Note that the optimisation problem is still linear in the a’s. The problem can be
reduced to the original ¥-SVMs by setting p = 1, (¥ = 1, and omitting the viEx,

term in the primal formulation.

7.5. CONCLUSION 121

By using different values of v and v*, the tube is not symmetric. However, the
advantage of using the same v on both sides of the tube is that € and the bias, b, can
be determined in the same way as in the original formulation.

7.5 Conclusion

Let us consider the original design requirement again:

It is required that the new generation of inferential sensors should try to
incorporate any other form of prior knowledge that is available.

The incorporation of prior knowledge is one of the most challenging task in inferential
sensor learning. Prior knowledge can take many forms and can be entered in a number
of different ways. In this chapter three possibilities of incorporating prior knowledge
were discussed.

One form of prior knowledge is boundary information or the behaviour of a process
in the limit. This type of prior knowledge can only be useful if the model is able
to extrapolate effectively. Through the introduction of the mixed kernel approach
in SVMs, the resulting model has gained the ability to extrapolate conservatively
outside the known learning space. It was shown in a number of examples that the
inferential sensor built on support vector machines using boundary information can
predict well outside the known learning space. Furthermore, being able to use low
degrees of polynomials, the model can gracefully degrade which is far better than
simply leveling off to a bias (like for a RBF kernel alone) or becoming virtually
unbounded (like for high degrees of polynomials).

The other form of prior knowledge introduced is the multi-dimensional scaling
approach where the relative importance of relevant features is incorporated. The
relative importance is determined by other types of learning methods, like NNs or
Genetic Programming. This determination of relative importance is often also called
sensitivity analysis and its explanatory power is an important asset. The information
is incorporated through the kernel functions. It was shown that although the perfor-
mance of the model with respect to the learning capacity is only slightly improved,
the ability of the model to extrapolate using the test data is increased dramatically.

The last form of prior knowledge considered is the variable size of the e-insensitive
zone. The type of prior knowledge is focussed on a priori information on the learning
space. In case where the density of observation is low or sparse, the value of € in that
region can be set small so that the model is forced through these rare observations and
incorporated them as support vectors. Determining the different values of € might
prove to be difficult. Another way to achieve the variable tube size, is to use the
v-Support Vector Machine with supplied functions {(x) which depends on the input
space. The functions could reflect the knowledge of different noise levels on the input
data.

Of course there are many other forms of prior information. For example, first prin-
ciple models. How to incorporate the information intelligently and with ease, remains
virtually an untouched research field. What remains is that the inferential sensors,
built on incorporated prior knowledge, all have increased learning and generalisation
abilities.

122 CHAPTER 7. INCORPORATE PRIOR KNOWLEDGE

Part 111

Operational Requirements

123

124

Chapter 8

Adaptivity

8.1 Introduction

Many modelling approaches deal with dynamic processes. For example, due to the
slow degradation of a catalyst bed, the operating conditions change over time. After
some time, the reactor has to be shut down to replace the catalyst. The shut down
of a reactor is scheduled at fixed time intervals. However, since the catalyst bed does
not degrade every time at the same rate, the shut down may often happen too soon
or too late. If the shut down is too soon, the unused catalyst is wasted. If the shut
down happens too late, too much off-spec product is manufactured.

In online applications an inferential sensor frequently becomes invalid after some
time since the model is incapable of predicting well under such changing conditions.
Therefore, it is necessary for the inferential sensor to adapt to new information or
conditions [112]. A number of levels of adaptation is proposed and discussed in this
chapter of the design thesis.

To achieve adaptivity, the inferential sensor first needs to know when and if some-
thing novel has occurred. It is not a question of recognising obvious changes in the
process like new equipment or procedures. The problem is about detecting subtle
changes like seasonal behaviour or the slow degradation of a catalyst. This chapter
also discusses and illustrates a new approach for detecting novelty. This new approach
involves the characteristics of the support vectors determined by a SVM.

The ultimate goal is that the adaptation of a inferential sensor occurs online
[112],[70]. One way to achieve this is to use transductive inference [19],[106]. That
is to build each time a model for a specific point of interest and predict the outcome
of this point. Thereafter, the model is discarded. This idea was also explored in [61]
and [62] where an adaptive online learning algorithm is proposed.

The layout of this chapter is as follows. In the first section we illustrate a support
vector based approach for novelty detection. A number of adaptation levels are dis-
cussed in the second section. Finally, in the last section of this chapter the issues and
implementation of the transductive modelling approach are discussed.

125

126 CHAPTER 8. ADAPTIVITY

8.2 Novelty detection

Novelty in terms of chemical applications are those observations related to changed
conditions in the plant or processes. The ability to detect novelty or being aware of
possible novel information is very important in inferential sensor design. Currently,
novelty is detected based on the error statistics of the inferential sensor [112].

The support vector machine method provides a different approach in detecting
novelty. A support vector approach for novelty detection has been applied to clas-
sification problems [80],[9],[25],[78]. Again very little has been done for regression
applications [33]. In our approach we use the fact that support vectors are those
observations that are difficult to predict. When a new observation is selected as a
support vector, there is a high probability that something new is happening.

Of course one cannot make the decision based on just one observation and one
support vector machine model. However, if a new observation is repeatedly chosen as
a support vector by several models over a period of time, there is a high probability
that something novel has occurred.

(a) SVM performance and support vectors for learning data
1.5 T T T T T T T T T

® T

-05 1 1 1 1 1 1 I 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coolossoooookloocoocooolosoos coooolookooookalo T T
> Data
5 RKooooo 000000000000%K0000000000000000 00000000%0000K0000000 N
0000 600000000000%K0000000000030000 60000000%K0000%K00000000 * SV's
10 [¥oo0000 600000000000%K0000000000000000 00000000%0000%000000000000 -
5
= 15 Kooooo 0000000000000%0000000000000000 00000000%0000%000000003000000%0 -
© 56660000%0000%000000000000000K00
= o000 000000000000 0000000000000000 ©coo00000 000¥00000000000000 000
Q FSSSESSSC ISP 1ISSSSSSSES ISR 1494
20 Kooooo 00000000000K0000000000000000 00000000%0000%00000000000000000 -
o000 %cccccnucccc 0000000000000000 ©coo00000 000¥0000000000000000 oo
25 ooooo 0000000000000%0000000000000000 00000000%0000%K0000000000000000 0 o%o B

20 30 40 60 70 80 90 100

Index of data point

Figure 8.1: Novelty detection using SVMs.

The process of novelty detection using support vector machines is illustrated in Figure
8.1. In graph (a) the performance of the SVM models is given for the learning data
as well as the support vectors used. The vertical dashed line indicates the starting

8.3. ADAPTATION LEVELS 127

point of the novelty detection routine. All learning data before this line, is known at
the first iteration. In the following iterations each time one data point is added to
the learning set. Graph (b) shows at each iteration which data points were used as
learning data, indicated by crosses, and which of those data points were subsequently
selected as support vectors, indicated by dots. From Figure 8.1 it is clear that the
previously chosen support vectors do not change over time. Furthermore, the newly
selected support vectors also stay stable after a short period of time. Therefore, if
a new observation is selected as a support vector there is a high probability that
something is changing.

Finally, the ability of a inferential sensor to detect novelty fast and accurately is
an important aspect needed to meet the design requirement of adaptivity required for
inferential sensor development.

8.3 Adaptation levels

The learning data may not always include samples from all plant operating regions.
Something in the plant’s operating state may change to one that was not included in
the original learning set. The inferential sensor needs to be able to adapt to that [112].
The adaptation of inferential sensors can take place in several ways, like switching
to another known model when the process enters a new operating regime, changing
the parameters of the current inferential sensor or even completely rebuilding the
inferential sensor offline [33]. Adaptation does not only imply the change of the
model used by the inferential sensor, but also the operational state of the inferential
sensor. For example putting the inferential sensor on alert for detected novelty.

Since the inferential sensor can be adapted in different ways, one could grade the
different forms of adaptation in levels of severity [33]. It could be that no novelty
has been detected and the model is still operating satisfactory. No adaptation is
necessary. The only thing needed to be done is to update the history sets with the
current observation. This is a Level 0 adaptation.

At a next level the process could be drifting off into an unknown domain, but
not enough information is known yet to make any adjustment. This occurs when the
inferential sensor detects a novelty, but the effect of noise or the presence of an outlier
could not be ruled out as the cause of the detected change. The adaptive inferential
sensor will therefore not change until more is known. However, the inferential sensor
will be alerted to the possible occurring novelty. In this adaptation level not only the
history set is updated with the current observation but also the learning data set.
The adaptation that occurs here is of Level 1.

The inferential sensor may also have detected that the current process is running
in another known operating domain. Therefore, a switch to another known model is
triggered. This type of adaptation is a Level 2 adaptation. A third level of adaption
occurs when not a single model is used but a combination of known models. This level
of adaptation often occurs when a process is switching from one operating regime to
another.

Higher levels of adaptation will require a partial or complete rebuilding of the
inferential sensor. In a Level 4 adaption, for example, the inferential sensor is built

128 CHAPTER 8. ADAPTIVITY

online, like in the transductive modelling approach. For each observed data point a
model is built with the sole purpose of predicting that observation. Thereafter, the
history and learning data sets are updated with the observation. In this level, each
data point is seen as a novelty. To rebuild a inferential sensor partially, is a Level 5
adaptation. The adaptation typically involves the adjustment of some parameters of
the inferential sensor. Here the learning data set is largely still valid and only a small
adjustments needs to be made. Finally, a Level 6 adaptation is the most severe form
of adaptation which requires the inferential sensor to go off-line and restart the whole
modelling process. This would occur when the process is operating in a completely
unknown domain to such an extent that the learning data set is completely invalid.
The results of the lower level adaptations are sent back to the operational inferential
sensor. An overview of all the levels of adaptation is given below.

Level 1: No adaptation.
Action: Update history sets.

Level 2: Novelty detected.
Action: Not enough known yet, wait for more data.

Level 3: Model disagreement.
Action: Switch to other model (if available).

Level 4: Single model invalid.
Action: Use combination of models.

Level 5: Transductive Modelling.
Action: Determine neighbourhood, build model, update history and learning
data sets.

Level 6: Confirmed detection of novelty.
Action: Partially rebuild inferential sensor.

Level 7: Learning data set invalid.
Action: Rebuild inferential sensor offline.

8.4 Transduction

Process engineers in industry are increasingly relying on inferential sensors to monitor
and control processes [40],[100]. They cannot wait for modelling scientists to adapt
or rebuild a inferential sensor. They require that the whole process of building,
monitoring and adapting of the inferential sensor be done online as much as possible
[112].

Transductive modelling [19] is ideal for online applications. The whole idea is that
for a given test point, a neighbourhood of data points is selected from the learning
set. Using the selected neighbourhood as a learning set, a model is built to predict
the output of the test point. In transductive modelling, the model is not necessarily
stored or used again. For every new test point, a new model may be built.

8.4. TRANSDUCTION 129

New observation

b’
Determine a Hi
neighbourhood of g _??Ly(ietA)}
% from S o 44
)
|
|
|
Build Local Prediction of
Learning Machine g1

Figure 8.2: The Transductive Learning Machine

In Figure 8.2 a diagram of the transductive learning process is given. Assume that in
any point in time an observation tx is given. From the existing data set S of learning
data, a neighbourhood around the observation tx is determined. In order to select
the neighbourhood a number of aspects has to be taken into account, namely the size
of the neighbourhood, type of distance measure, data density, scaling, dimensionality,
noise and outliers, and interpolation or extrapolation ability.

With respect to the size of the neighbourhood, one has to select enough relevant
data points to build an appropriate model. This means that the density of data
points in such a neighbourhood should be uniform in all directions, otherwise the
neighbourhood will not be well balanced. If the neighbourhood is not well balanced,
the resulting model may not be able to interpolate or extrapolate well. Therefore,
the neighbourhood selection step is a very crucial part.

The way a neighbourhood is selected depends on the distance measure used. It is
important to use an appropriate distance measure that takes into account the scaling
of the data points and the dimensionality of the data set. Furthermore, the distance
measure should also be robust with respect to noise and outliers present in the learning
data.

The type of distance measure can vary from the straightforward Euclidian dis-
tance to multi-dimensional methods like clustering and Delaunay tesselations. In the
next two sections, the Euclidian distance and the Delaunay tesselations method are
discussed.

130 CHAPTER 8. ADAPTIVITY

8.4.1 Euclidian distance

The Euclidian distance measure between two vectors is determined by [42]

(8.1)

The smaller the value of d, the closer the two data points are to each other. The
neighbourhood of size k around the test point therefore consists of the k data points
in the learning set that are the closest to the test point in terms of the Euclidian
distance measure.

The size of the neighbourhood is an integer value k, which is set a priori by the
user.

Figure 8.3: Neighbourhood of learning data around test data point based on the
Euclidian distance.

Consider the graph in Figure 8.3 where the black dot indicates the test point. If a
neighbourhood Euclidian distance, of 8 closest data points to the test point is selected,
based on the Euclidian distance, that would result in using the data points inside the
large circle.

From the figure one can clearly see that the neighbourhood selected using the
Euclidian distance, does not take the data density into account. The density of data
points inside the neighbourhood is not uniform and valuable information might be
lost. To overcome this problem, one can use the Delaunay tesselations method for
selecting the neighbourhood, which is discussed in the next section.

8.4. TRANSDUCTION 131

8.4.2 Delaunay tesselations

The disadvantage of the Euclidian distance is that it does not take data density into
account, as seen in Figure 8.3. To overcome this problem, determine the Delaunay
Tesselation of the data set [18]. The method constructs simplexes among the data
points such that no data point is contained in any simplex’s circumference. For the
two-dimensional data sets, the simplex is a triangle and for three-dimensional data
it is a tetrahedron. The resulting Delaunay Tesselation for the example is given in
Figure 8.4.

Figure 8.4: Delaunay Tesselations of learning data around test data point.

The neighbourhood of the test point is then determined by the neighbouring sim-
plexes. The immediate neighbouring simplexes are those simplexes that contain the
test point as one of their nodes. A first level Delaunay neighbourhood contains the
data points of the first layer of simplexes, as seen in Figure 8.5. The first layer of
simplexes is indicated by the light gray area and the data points that will form such
a neighbourhood are coloured dark gray.

A second level simplex is a simplex that consists of at least one of the nodes of a
first level simplex. The data points of first and second layer of simplexes combined,
defines a Delaunay neighbourhood of the second level. In Figure 8.6 the simplexes in
the two layers are indicated again by the light gray area. The learning data points
that form a second layer neighbourhood are coloured dark gray.

Using Delaunay tesselations to construct neighbourhoods, the data density is more
uniform in all dimensions. From Figure 8.6 one can see the data density expands
equally in all directions as the layers are increased. In high-dimensional data sets
(5 dimensions and more), this approach will construct neighbourhoods that represent
the data set far better than the neighbourhoods constructed by the Euclidian distance
measure.

132 CHAPTER 8. ADAPTIVITY

Figure 8.5: Neighbourhood learning data around test data point based on the first
level of Delaunay Tesselations.

Figure 8.6: Neighbourhood learning data around test data point based on the second
level of Delaunay Tesselations.

The parameter to be set in the software tool is level of neighbourhood. In high-
dimensional spaces, a level two neighbourhood consists of almost all the data points
in the data set.

8.5. CONCLUSION 133

Algorithm J. Transduction

Step 1: Select the learning set S the learning set.

Step 2: For an observation % determine neighbourhood N of data points
from S around tx:
for given distance measure DM and neighbourhood parameter d,
Ny ={x € S|DM(x,%) < d}

Step 3: If Ny ¢ N where N = {Ny,Ny,..., N} the set of all existing
neighbourhoods,

- build SV M; based on learning data in Ny

- save SV M; model in

- save neighbourhood Nix in N = {Ny, No,..., N} U Nx

else SV M; = SV M* where SV M* is the model corresponding to
neighbourhood N* = {N* € N|Ny = N*}.

Step 4: Predict the output § of x using SV Mj.
Step 5: Update learning set (if necessary) with test point: S = SU(%;, §;)-

Step 6: Return to Step 2.

8.5 Conclusion

Consider the original design requirement:

The inferential sensor should be able to perform novelty detection and
implement a procedure to adapt the model to the changed conditions
which were detected as novel information.

Perhaps one of the most important design requirements of the new generation of infe-
rential sensors is its ability to adapt to changing conditions due to dynamic processes.
Unless inferential sensors possess the ability to adapt, their widespread use in real-
world applications will be very limited. Currently, their lifespan is too short which
often results in high maintenance costs.

Before a inferential sensor can become adaptive, it needs to know when to adapt.
Therefore a reliable novelty detection step is needed. A new approach for perform-
ing novelty detection that uses the characteristics of support vectors was introduced
and discussed. The advantage of using this approach is that the novelty is detected
independent of the error statistics of the current model.

This chapter also discussed various forms of adaptivity and introduced different
levels based on the impact on the operational status of the inferential sensor. These

134 CHAPTER 8. ADAPTIVITY

level vary from low impact adaptation like updating history sets and switching to
other known models to a complete offline rebuilding of the inferential sensor.

One specific level of adaptation, the Level 4 Adaptation, uses the transductive
modelling approach which was discussed in detail. Issues involving the selection of
sets of neighbouring observations to a point of interest were discussed and illustrated.
The pseudo-code of the implemented transductive approach in the software package
was given.

The research did not fully explore all possible levels and forms of adaptivity that
exists. Only an overview of the various scenarios encountered by the engineers of
The Dow Chemical Company were considered. A closer inspection of the effects these
adaptations have on the process leads to the different levels of adaptation.

The different levels of adaptivity were not implemented fully in the software tool-
box, since the toolbox is primarily for model building purposes. Normally, the adap-
tive part of the inferential sensor would be implemented using rule based or fuzzy
logic systems into which the modelling software can be integrated.

It is clear, from our point of view, that only the surface of adaptive inferential
sensors has been scratched and much more work needs to be done to fully explore all
possibilities.

Chapter 9

Self-Diagnostic Capabilities

9.1 Introduction

In order to survive in a real-life industrial environment, a inferential sensor needs to
be able to evaluate its own performance [70]. This requires that more intelligence
is built into the inferential sensor so that a process engineer receives some feedback
about the accuracy of the predictions made by the current model. This capability is
essential in safety-critical applications. For example, it is of utmost importance in the
control of chemical processes that use materials that are hazardous to humans and
the environment. Therefore, in order to prevent a false sense of trust and limit the
rigk of spills and accidents, the process engineer needs to be warned when the model
detects that its predictions are not reliable anymore [40].

Self-diagnostics is not only used for evaluating a model’s performance, it may also
be used to evaluate the performance of other sensors [112] or indicate that the process
is being run at off-specification operating conditions. Possible faulty equipment could
then be inspected and replaced if needed. In the case of off-specification conditions,
the process engineer could adjust the process controls to the desired specifications.
Such actions will reduce the manufacturing of off-spec products, resulting in a huge
cost advantage [40].

To some extent a self-diagnostic capability is connected to novelty detection and
adaptation. When novelty is detected and some form of adaptation is required, the
inferential sensor has diagnosed itself as not being reliable anymore. There is a slight
difference, though. Under self-diagnosis we understand that the inferential sensor
gives some kind of confidence level or reliability measure for the prediction it has
made. When the inferential sensor is not confident that the current prediction is
made with high accuracy, then there is the possibility of a novelty.

For the inferential sensor to diagnose the reliability of its predictions, it is necessary
to associate some measure of uncertainty with the model of the learning machine [40].
The lack of the widespread use of SVMs in industry could partly be explained by the
absence of confidence intervals associated with the predictions made by the model.
The level of confidence in a prediction is often as important as the prediction itself.

One of the main problems encountered in inferential sensor development is how to

135

136 CHAPTER 9. SELF-DIAGNOSTIC CAPABILITIES

determine the uncertainty. In this research we explored three possible ways to obtain
uncertainty measures for SVM for regression. The first is a post-learning procedure in
which the expected prediction values and their confidence is determined [31]. Another
possibility is to construct a model disagreement measure based on the behaviour of
several models [83],[41]. Finally, through the application of the Bayesian Framework,
error bars can be assigned to the predictions being made.

Agide from uncertainty measures, there are also some other statistical measures
that are used to access the overall performance of a inferential sensor. These include
error statistics like correlation coefficient and standard deviation, as well as order
statistics like the residual analysis and tests for normality of the errors.

This chapter consists of four sections. The first section gives an overview of other
statistical measures that are frequently used for assessing the overall performance of
the model. Thereafter we briefly discuss three possible approaches for determining
uncertainty levels. It is shown in the second section how a post-learning confidence can
be obtained for SVMs. In the third section we briefly mention the error bar estimation
obtained from applying Bayesian inference to SVMSs, which was recently given in [20].
Finally, we explore the possibility of using a non-statistical uncertainty measurement
which is used in NN applications, namely the model disagreement measure.

9.2 Error statistics

There are some overall error measures that can be used to assess the performance of
the model. These measures, commonly known as error statistics, can be used for any
type of learning machine [71],[43]. The error statistics evaluate the relations between
observed output y and the predicted output ¢. It is assumed that both variables are
random variables and the variances and covariances exist for both. Furthermore, their
variances need to be nonzero.

Standard deviation

The standard deviation gives an indication of how spread out the values of the sample
are about its mean. Let us define first two statistical measures: the mean and the
variance. The mean of a sample £ is the sample’s average value and is determined as

£
Zi:1 i
e ?
where £ is the number of observations in the sample. The mean is also known as the

expectation of ¢ and denoted by E[t]. The variance of the sample measures the spread
or dispersion about the mean of the sample values and is given by

2 _ Zf:1(ti - 7?)2
o)==

t=

In some literature o2 is also denoted with Var(t).
Now we can define the standard deviation o(t) as the square root of the variance.
For the observed output y and the predicted output §, we determine the standard

9.2. ERROR STATISTICS 137

deviation of the difference (y — §), i.e.,
o(y —§) = v Var(y — 7). (9-1)

Correlation coefficient

The correlation coefficient is a dimensionless quantity between zero and one, which
measures the association between two variables. For the observed y and predicted g,
the correlation coefficient is determined as

Cov(y,)

°T Vary)var(g)’

where the covariance of y and § is determined by

£ _ ¢ R -
Cov(y,9) = 2z (Zyl —9) 2 (eyz - y)-

(9.2)

If the correlation coefficient of two variables is close to one, there is a strong relation
between the observed output y and the predicted output ¢. It is a indication that the
model is able to reproduce the observed output.

R?-statistics

The RZ%-statistics or coefficient of determination is a quantity that gives an indication
of the proportion of variance explained by the model [56]. It is defined as

o1 SSE,
Syy
where SSg is the sum square error
¢
SSe=">_ (yi — i)
i=1
and Sy, is determined as
¢
Syy = Z (v:)® — 45,
i=1

The sum square error measures the variability in y remaining after the model has
been considered and S, measures the variability in y without considering the effect
of the model. Therefore,

£ N
21:1 (yi — yi)2
[—_a?
Yoicr (0)? — €52
gives the proportion of variation explained by the model.
Because 0 < SSg < 1, it follows that 0 < R?2 < 1. If R? is close to one it is an

indication that most of the variability in y is explained by the model. However, one
should not infer from large R? values that the model is an accurate model [56].

R?=1-

(9.3)

138 CHAPTER 9. SELF-DIAGNOSTIC CAPABILITIES

Relative error
Consider , ,
> @) —ng? =n (72":;(’”)2 - y2> = no*(y),
and
SSp (S @i —902) /n
Syy a2(y) ‘

Now taking the square root over both sides, gives

£ L 5)2
\/%: \/(Zizl((j;)))/n, 0.0

which is often referred to as the relative error. Let us denote the relative error with
RE. Then the R2-statistic can also be written as

R*=1- (RE)%.
Root mean square error of prediction(RMSEP)

The mean square error is defined as

£ ~
MSE — Zi:l (yl - yl)2
n

?

and gives the expected squared deviation of the observed y and their predictions §.
It is therefore a measure of the size of the measurement error.

The root mean square error is the square root of the M SFE and has the same units
as the observed y. The RMSEP for the observed y and predicted § is given by

£ 52

Thus, the RM S E P measures the average variability in y that remains after the model
has been considered. The RMSEP can also be determined using the relative error
and the standard deviation: RMSEP = E, * s(y).

Vapnik’s measure

Another overall error measure that can be used it is Vapnik’s measure [11] and is
often used as a model selection criterion. This error measure uses the estimation of
the upper bound of the prediction rigsk provided by SLT and is given by

Prediction Risk < _Bemp (9.6)

(1 —cve)s’

9.2. ERROR STATISTICS 139

where
Ba(In(2/hn) + 1) = In(n/4)

£

Here h, is the VC-dimension of the set of loss functions and ¢ is a constant that
reflects the “tails of the loss function distribution”. Recall that in Chapter 2 we
explained that the “tails of the distribution” give the probability of observing large
values of loss. Furthermore, the upper bound in (9.6) holds true with probability
1 — n. For practical purposes ¢ = 1 and 5 = min(4/+/n,1) are recommended by
[108],[11]. An estimate of the VC-dimension of a given learning machine model that
Vapnik proposed [106] is:

e=4

hest = mm(l, R2 ” Wo ”2) + 17 (97)

where
| wo = w" K (x,x)w,

and R is the radius of the smallest sphere containing all the training data and it can
be estimated using

R? = minmax (K (x;,%;) + K(a,a) — 2K(x;,a)).

a X;
Finally, Remp depends on the loss function used. For linear e-insensitive loss

V4
1 .
Remp = 7 E (lys — Gil —€),

=1

and for quadratic loss
£
1 N
Remp = 7 Z (lys — Gil — 6)2'
i=1

When comparing different models, the model with the smallest value of Vapnik’s
measure is selected as the model with the lowest prediction risk.

Error distributions and residual information

The difference between the observed y and the predicted 7, is called the residual and
is denoted by
ri = Yi — Ui

Since a residual may be viewed as the deviation of the observed output and its pre-
diction, it measures the variability not explained by the model. One can also think
of residuals as the observed values of the errors. Therefore, any departures from
the underlying assumptions on the errors should show up in the residuals. Note that
residuals have zero mean and their approximate average variance is given by the mean

squared error. In order to make residuals comparable they are often standardised such
that

140 CHAPTER 9. SELF-DIAGNOSTIC CAPABILITIES

The standardised residuals have zero mean and unit variance.

Various types of residual plots can be considered [56]. In the software tool, we
consider only three types. The first is a histogram plot of the (standardised) residuals’
distribution. This graph is used to view the error frequency. Since it is assumed that
the errors are normally distributed, the shape of the histogram plot should roughly
follow the normal density function.

The second graph used, is the plot of (standardised) residuals against the predicted
7. These graphs are useful for detecting several common types of model inadequacies.
Ideally the residual plot should show no patterns but be contained in a horizontal
band. If for example a funnel pattern emerges, it is an indication that the variance
of the error is not constant. A curved residual plot indicates nonlinearity that is not
captured by the model. The residual plot against § may also reveal unusually large
errors. These observations may be considered as outliers. However, large errors at
the extreme of § could indicate that either the variance is not constant or the model
does not capture the true relationship between the inputs and the outputs.

The third graph being used is the plot of (standardised) residual against x; with
j=1,...,n and n the number of dimensions. These graphs show the residuals against
the input dimension and should show no relation to the input dimensions. Thus, as
in the previous residual plot, the plot should be contained in a horizontal bar.

For more information on interpreting residual plots, the reader is referred to stan-
dard statistical literature like [56],[71].

Normal probability plots

A normal probability plot of the residuals is used to see whether there is a gross
departure from normality. It is often assumed that the errors or residuals are normally
distributed with zero mean and an approximate average variance of M SE. Small
departures from normality do not effect the model greatly, but gross non-normality
is potentially more serious as the confidence and prediction intervals (like the error
bars) depend on the normality assumption.

The normal probability plot is constructed as follows.

1. Let ey) < epg) < -+ < epg be the (standardised) residuals ranked in increasing
order.

2. Approximate the expected normal value, Elef;] with

ot :(i—%)/e, i=1,...,4,

where ® denotes the standard normal cumulative distribution.
3. Plot the probabilities Elef;)],4 = 1,...,£ against the errors e[;),i=1,....¢-

If the errors are indeed normally distributed, the normal probability plot should be a
straight line. Heavy-tailed distributions show at the extremes sharp departures from
the straight line. The error distribution is then considered not to be normal. Light-
tailed distributions tend to flatten at the extremes. Other patterns may also emerge.
Standard statistical literature discusses these in detail [56],[71].

9.3. CLASSICAL CONFIDENCE 141

Furthermore, the occurrence of one or two large residuals will show up on the
normal probability plot. Therefore, normality plots are often used to check for the
presence of outliers.

9.3 Classical confidence

The way classical confidence is often obtained from data driven models is to assume
that the learning machine model is a perfect model of the problem in question. Note
that this is a big assumption to make and it is in general not true. However, in
many industrial applications this approach for determining confidence is used and
therefore needs some consideration. In this section we will show the disadvantages of
this approach.

Under the assumption that the learning machine model is perfect, the predicted
output values and their corresponding observed output values drawn from the (in-
dependent) test set must be identical. The plot of the observed values against the
predicted values must form a straight line with gradient one and intercept zero.

Ag there is a close relationship between correlation analysis and fitting straight
lines by the least squares method, we first consider the correlation coefficient between
the predicted and observed output values [71]. For a perfect model, the correlation
coefficient should approach one since there is a perfect correlation between such a
model and the data. Of course, we know that this will seldom be the case and
there will always be an error between the predicted output of the SVM model and
the observed output [31]. As a result, the correlation coefficient will deviate from
one. Therefore, it is necessary to test for statistical significance of the correlation
coeflicient. The statistical significance of the correlation coefficient is tested using a
one-sided t-test. If the test shows that there is no correlation between the observed
and predicted output, the SVM model should be changed.

Now, in case of a significant correlation coefficient, we can proceed to find the best
least squares fit for the straight line. Let ¢;,7 = 1,...,£, be the predicted values of
the observed y;. The obtained regression line is then used to modify the SVM model’s
prediction g; such that

Ji=m- g +c, (9.8)

where ¢ and m are the intercept and slope of the regression line respectively. §; is
now the estimate of the true value. The slope of the regression line should be close
to one, otherwise the SVM model is inconsistent with the data. In practice, the SVM
model must be rebuilt until the condition is met.

For the model in (9.8) we can provide confidence limits around the mean response
of (9.8), if we assume that the errors around the regression line are normally dis-
tributed [56],[31]. The 100(1 — a)% confidence interval on the mean of the response
of (9.8) at the point §;, is given by

_ Yio i —)? (1 i —)2
I=giEtapay| ==y 5| 7+ —l(y _) — |, (9.9)
- Zj:l @ —9)

142 CHAPTER 9. SELF-DIAGNOSTIC CAPABILITIES

where §; is the expected value determined by (9.8), to/2.¢ o the t statistic with £ — 2
degrees of freedom.

The confidence interval in (9.9) is not appropriate for determining the confidence
of a new observation, since it is not a probability statement about future observations
but an interval estimate of the mean of y [56]. Therefore, we need to determine the
prediction interval for a future observation yo. The 100(1 — a) % prediction interval
on a future prediction gy is:

£ ~ \9 ~ =
_ 21 (U5 — 8) 1 (G0 — 9)*
I:yoita/2,l72 JZT 1+ ZJ’_Z—A?Q . (910)
Zj:l @ —9)
Regression Line: slope= 1.0324, intercept= —0.017985
12 T T T T T T
Output Data y /__/
1k — Regression Line e i
95% Confidence Interval PR L
— — 95% Prediction Interval P
. 7 g
0.8r e b
2
5 0.6 b
o
e}
(0]
c
3 04r 1
o
o
0.2r b
or i
-0.2 1 1 1 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Predicted Output

Figure 9.1: Confidence and Prediction Interval for Example 1 in Chapter 2.

In Figure 9.1 the observed output is plotted against the predicted output. The
determined regression line with the 95% confidence and prediction intervals can also
be seen. Since the slope of the regression line is very close to one, the SVM model
is almost perfect and therefore the confidence interval is very narrow. Note that the
confidence interval is in effect a pair of parabolic lines with the narrowest interval at
the point where the bulk of the data lies as seen in Figure 9.2. In fact, the minimum

9.4. ERROR BAR ESTIMATION 143

in the confidence interval occurs at the mean of the z-axis and y-axis data. This
type of confidence is therefore only a reflection of the mean of the data and does not
give the true uncertainty associated with a prediction. Another form of uncertainty
measurement is therefore needed.

Regression Line: slope= 0.84344, intercept= 1.0652
95 T T T T T T T T T

— Regression Line -
95% Confidence Interval P
9F | — — 95% Prediction Interval e _ R

©
(<] o1
T T

Observed Output
~
o
T

| | |
7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9
Predicted Output

6 | | |

Figure 9.2: Confidence and Prediction Interval around the regression line.

9.4 FError bar estimation

Another statistical approach to associate uncertainty with a prediction is the error
bar estimation. Error bars naturally arise from applying Bayesian Techniques to
a learning machine. A Bayesian interpretation of the Support Vector Machine has
first been posed in [93] where it has been shown that the use of different kernels
in SVMs can be viewed as defining different prior probability distributions on the
function space. However, incorporating the popular Bayesian techniques with priors
on the function space cannot be done as easily as for priors on the weight space,
like in [50]. Recently, the Bayesian Framework was extended to SVM for regression
[20],[12],(44],[16].

In the Bayesian Framework three probability terms have to be determined, namely

144 CHAPTER 9. SELF-DIAGNOSTIC CAPABILITIES

the prior probability, the likelihood and the evidence, in order to determine the pos-
terior probability [63]. The prior probability P[f(X)] of the unknown function f(x)
at X embodies a priori knowledge of the function. It is used to impose constraints
on the model such that significant probability is assigned only to those functions that
satisfy the constraints. The likelihood is the probability P[D|f(X)] that, if f(x) is
the underlying function of the data D, by random sampling the function f(x) at X
will produce Y. It can also be considered as the noise distribution of the additive
model y; = f(x;) + 6; if §; is i.i.d. with probability distribution P[;]. The evidence
P[D] is the likelihood of the data for a given model. Finally, the posterior probability
of the function f(X) is determined by using Bayes’ Rule 1,

PIDE(X)]PIE(X)]

PIE()ID) = =25

Error bars for a prediction can be computed if the mean and variance of a given
posterior distribution is known. The derivation of the probability functions required
can be found in [20],[44] and [94]. As the formula for the estimation of the error bar
for the e-SVM was published in 2002 in [20], this measure of uncertainty has not been
tested exstensively in simulations.

9.5 Model disagreement

Since the confidence interval for many learning methods is based on the mean of the
data and not taking the density of the learning space into account, the confidence
interval often does not reflect the effect of varying data density [82].

The idea is to consider different models of similar complexity with the freedom to
make mistakes in different parts of the input space as a function of the local density
[83]. In areas where enough data are present the different models should lie in close
proximity of each other, whereas in areas where less data are available the models
should have more freedom. The confidence of a selected model should be large in that
area where the other models display the same behaviour. However, in areas where
the data density is low, different models behave differently with the result that the
confidence in a selected model should be lower.

It has been shown in industrial applications of NNs that the use of a collection of
networks gives more robust models that include confidence limits based on the stan-
dard deviation of stacked neural nets [41]. This notion of confidence, is called model
disagreement. In areas where different models disagree with each other, there is high
level of disagreement among the models and therefore the value of the measurement of
disagreement is high. Similarly, in areas where different models agree with each other,
there is a low level of disagreement, resulting in a small value for the measurement of
disagreement.

One of the main issues in this approach is how to construct various models which
are sufficiently different from each other but have the same level of complexity. If com-
parible complexity was not required one would try to compare apples with oranges,

P[B|A]P[A]

'For events A and B, the probability of event A given event B, is P[A|B] = PIB]

9.6. CONCLUSION 145

since the models would not only differ in their error term but also in their complexity.
In the case of NN applications, constructing different models of the same complexity
can be done by keeping the number of hidden nodes fixed.

Note that no assumptions on the prior or posterior probability distributions are
made, nor is normality of the errors assumed. The only assumption being made is
that the set of models used are not highly correlated and therefore their modelling
errors are not correlated.

Ideally, the model disagreement measure should be extended to Support Vector
Regression. However, it is not clear how to construct different models which vary in
their error terms but not in their complexity terms. There are basically four parameter
choices that could be used: €, C, the kernel and the kernel parameter. In support
vector regression, the error term is mainly controlled by the size of e. However, ¢
also controls the number of support vectors and therefore the complexity so it cannot
be varied. Since the regularisation parameter C controls the trade-off between the
error term and complexity term, it too must remain fixed to assure the same level
of trade-off for different models. What remains are the kernel choice and the kernel
parameter. Since the type of kernel function greatly influences the behaviour of the
resulting SVM model, it is a possible candidate to consider. The application of the
model disagreement measure to SVMs for regression may be an interesting new field
of research.

9.6 Conclusion

Let us state the design requirement again:

The requirement for the inferential sensor is that it should have self-
diagnostic capabilities in order to evaluate its own reliability.

In this chapter we considered in addition to the error statistics that measure the
overall performance of the inferential sensor also three possible ways to assign an
uncertainty measure with a prediction made by the inferential sensor. These measures
are necessary to evaluate the reliability of the inferential sensor.

The error statistics that are used for evaluating the overall performance of a model
include the standard deviation, the correlation coefficient, the relative error and root
mean square error prediction. An error measure originating from SLT, namely Vap-
nik’s measure is also given. Residual plots are used to verify that the errors contain
no patterns, which is an indication that the model explains the variance in the data.
Furthermore, since it is assumed that the error between the observed output y and
the predicted output § is normally distributed, the normal probability plot of the
error is used to test for normality.

For learning machines, like support vector machines, which are derived without
prior knowledge or assumptions on the underlying distribution, classical confidence
limits can only be constructed in a post-learning way. Such an uncertainty measure
actually gives only confidence about the mean of the data and does not take data
density into account. It is therefore recommended to use this approach only when no
other measure of uncertainty is available.

146 CHAPTER 9. SELF-DIAGNOSTIC CAPABILITIES

Very recently it has been shown that through applying Bayesian techniques, an
uncertainty measure in the form of an error bar can be derived for support vector
machines for regression. Error bars assign an uncertainty level to a prediction and
can therefore be used for assessing the accuracy of a prediction made by the inferen-
tial sensor as well as monitoring the inferential sensor’s performance. However, no
extensive practical results are available yet on the industrial implementation of this
approach.

In industrial applications of NN and GP’s it has been shown that the model
disagreement measure provides a practical alternative which takes data density into
account and does not make any assumption on the prior distribution. However,
much more research is needed in order to extend this approach to SVMs, since the
approach requires the construction of various model of comparable complexity but
different errors in areas of low data density. In our point of view, this may be a new
and interesting field of research.

The new advances in support vector machine like the error bar estimation and the
model disagreement measure hopefully will enable the inferential sensor to associate
with its prediction a level of uncertainty. In addition, the error statistics give the
inferential sensor the ability to asses its overall performance. Combining both mea-
sures gives the inferential sensor the ability to monitor its performance and evaluate
its reliability.

Part IV

Implementation

147

148

Chapter 10

Implementation of Software

10.1 Introduction

In this final part of the thesis we show examples of the incorporation and imple-
mentation of the identified design requirements into software to build support vector
machines. The software is intended for fast prototyping purposes only, but has been
successfully used in industrial applications within The Dow Chemical Company [41].

The software was built using the MATLAB programming language [54]. It has
been observed that the MATLAB internal QP tool may not be optimal and therefore
we opted for an external off-the-shelve optimising tool. Note also that for online
applications where speed is essential other programming languages like C++ will be
a better choice.

The algorithmic code presented throughout the thesis represents the core of the
software. In order to make the software more user friendly, a user interface has been
built. The user interface also safeguards the parameters in order to prevent run time
errors that are most disturbing for the user. The tool also includes procedures for
viewing the results, examining the error statistics and exporting figures and data for
documentation.

The software uses a data structure in which data and parameters are stored in
fields. Since data are received in many different forms (Excel files, ascii files, text file)
a data preprocessing routine is included. The data preprocessing not only constructs
valid data structures of the training and testing data but also allows the user to supply
names to the input and output variables. These names are used to construct result
figures with informative titles and axes labels.

The software consist of two user interface windows. The first window, as seen in
Figure 10.1, allows the user to select the type of problem, the application and two basic
parameters, namely the kernel and the complexity parameters. This window also has
three menu bars, namely File, Execute and Results. In the file menu, the user can
either select an existing data file or construct one using the data preprocessing tool.
The second menu contains execution commands. The execution demands depend on
the application being used and whether any optimisation options are used. The third
menu, named Results, allows the user to display the obtained modelling results and

149

150 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

save the results in a data file.

<} Support ¥ector Machines: Setting Parameters =] oS

File Ewxecute Fesultz

Dataset |

Problem Type © Clssification " Regression

Applica‘[‘ions i+ Model Selection "~ Redundancy Detection € Outlier Detection

Prior Info (" Multi-Dim Sealing ¢ Boudary Data (" Wariable Noise Level
Kernel Choice © Polynomial {* Edit Parameters) ¢ Optimize Parameter
i+ Radial Basiz Function Width K]
" Polynomial & BEF Mizture
" REF & REF Misture
Complexity (" Acceptable Moize Level (¢ Edit Parameter " Optimize Parameter

* Ratio Suppart Vectars 0B

% Data Reduction

Advanced Choices Reset | Set | Exit

Figure 10.1: User interface for parameter setting.

’j

The second user interface window can be viewed by using the option Advanced Choices
in Figure 10.1. It contains more advanced parameter settings such as the type of
optimisation method used and the type of loss-function used. In Figure 10.2 all the
options available can be seen.

Although the software contains the implementation of SVMs the development of
inferential sensors is not limited to the use of SVMs. From our point of view the
development of inferential sensors requires the combined used of SVMs with other
techniques like NNs and GP. Each learning machine has its advantages and disadvan-
tages. One should use an appropriate technique for the problem at hand. Such an
example can be found in [41].

In the rest of the chapter, we show examples of the implemented software. In the
first section, the use of the support vector machine and the choice of its parameters
as discussed in Part I are illustrated. The second section contains examples of im-
plementations of Part II, which include the outlier and redundancy detection as well
as multi-dimensional scaling. The implementation of elements of Part II is shown in
the third section. Finally, we discuss in short some computation issues involving the
implementation of support vector machines.

10.2. APPLICATIONS OF PART I 151

<} S¥M: Advanced Parameter Setting 10| =|

Optimization Method * OPSolver " LP Solver

Regularization Parameter & Automaticaly © LCurve

Loss-Function {* Linear Loss {~ Quadratic Loss
Scaling Method {* RangeScaled Mean Scaled " Mone
Cached Kernel {* Mo Cached Kemel £~ Use Cached Kemnel
Subset Modelling (" Disjoint Subsets Edit Farameter(s)

" Overlapping Subsets

" Random Subsets

Transductive Modelling ¢ Euclidian Distance Edit Parameter

" Delaunay Tesselations

Resat to default Return to Sk

Figure 10.2: User interface for advanced parameter settings.

10.2 Applications of Part I

10.2.1 Complexity control

In this part the SVM method for regression is implemented. The optimisation of the
€ and v parameters is an additional component.

Implementation of SVM

Both classification and regression type of problems can be solved using this software.
The user makes a choice between a classification or regression problem type. Algo-
rithmic code A is implemented for the SVM for classification. The implementation of
the € and »-SVM involves the use of the Algorithmic codes B and C respectively. The
implementation of both codes are such that the type of loss function used is merely
a parameter choice. Note that since the classification SVM requires no complexity
control the options for the complexity control parameters are removed.

Setting of the values for € and v is done in the interface window of Figure 10.1
depending on which type of SVM regression (e-SVM or »-SVM) is selected. Note that
the user interface safeguards the values entered for the complexity parameters such
that € < 0 and 0 < v < 1 are satisfied.

152 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

Examples of the e-SVM and the v»-SVM were given in Chapter 2.

Optimising the value of € and v

The optimisation of the complexity parameters is a separate application. Once the
user selects this option, an executing command is available in the Execute menu
of Figure 10.1. The user is also required to enter iteration parameters before the
application can be executed. The optimisation of the complexity parameter largely
involves the use of Algorithm D.

Our implementation, however, is more interactive. It allows the user to inspect
the various models constructed during optimisation including their error statistics.
The user may also choose to select another value instead of the optimised value.

Consider the data of Example 1 in Chapter 2. The following parameters are set
C = 1000, linear loss, range scaling and an RBF kernel with o = 0.3. The optimisation
of € for iteration parameters e_start = 0, e_end = 0.5 and it_num = 11 is displayed in
Figure 10.3.

Figure 10.3 shows a number of error statistics of the various models plotted against
increasing percentages of support vectors. The error statistics corresponding to the
optimal value are indicated by the circle. Above the error plots, there is a control bar
with which the user can move among the different models according to the percentages
of support vectors. The circle moves accordingly. To the left of the control bar the
value € corresponding to the model of the encircled error statistics is displayed. Figure
10.3 also has a menu bar with the following options.

o Display optimal parameter
This option displays the value of the (selected) optimal complexity parameter.
In the case of the »~-SVM this option also displays the evaluated value of €
corresponding to v.

e Plot best SVM
The predictions made by the model of the (selected) optimal complexity pa-
rameter is plotted in a separate figure window. In this separate window all the
performance monitoring options (see Section 10.5) are available.

e Reset to optimal
If the user chooses to use the value originally determined by the optimisation
routine after all, this options resets the changes that have been made.

o Save all results
This option saves the result from the optimisation routine to a data file.

o Return optimal parameter
If the user is satisfied with the selected or optimal value, the value can be
returned as a setting for Figure 10.1.

The optimisation routine also displays a figure with the predictions of all the models.
Inspection of this figure can give the user an idea of the differences in behaviour of
the different models.

10.2. APPLICATIONS OF PART I 153

<} Figure No. 3: Complexity Parameter Error Sté -0 x|
File Edit “iew Inzett Toolz “Window Help Resuls
Yl ——
t‘ 1 T T T T
. g
5 DBE 1 1 1 1
04 2d = = sl LU
5 |1
) 1
=) -
[ﬁ D * @ 1 1 1 1 *
1|.'.I — 2!] 4.0 E!:I B!:I 100
05 1
D 1 1 1 1
0 4|.'.I 2!] 4.0 E!:I B!:I 100
Lo |
% 02F 3 .
o D .. @ 1 1 1 1 *
0 4|.'.I 2!] 4.0 E!:I B!:I 100
L
=02r ¢ :
(1]
= '
D aF .EI\ 1 I 1 1 -
0 20 40 B0 a0 100
% Support Yectors

Figure 10.3: Interactive figure for optimising the complexity parameter.

10.2.2 Handling high-dimensional data

The implementations of this chapter comes down to the implementation of various
kernels and the optimisation of their parameters.

Implementation of various kernel functions

The type of kernel function is selected in Figure 10.1. Although the user interface only
supports four types of kernel functions, many other kernels like 8-spline, ANOVA and
Fourier kernels are supported by the software. Examples of the RBF and polynomial
kernels can be found in Chapter 3.

Upon selecting a kernel function, the user interface assists the user in the type
and number of kernel parameters to be set. Again the user interface allows only valid
parameter entries. When invalid values are entered, the user receives information
about the nature of the error.

154 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

Optimisation of the kernel parameter

The optimisation of the kernel parameters is again a separate application. Once the
user selects this option, an executing command is available in the Execute menu
of Figure 10.1. The user is also required to enter iteration parameters before the
application can be executed. The optimisation of the kernel parameter involves largely
the use of Algorithm E.

Our implementation is yet again more interactive. It allows the user to inspect
the various models constructed during optimisation including their error statistics.
The user may also choose to select another value instead of the optimised value.

Consider the data of Example 1 in Chapter 2. The following parameters are set
C = 1000, linear loss, range scaling and € = 0.1. The optimisation of an RBF kernel
for iteration parameters o_start = 0.05, c_end = 0.55 and it_num = 11 is shown
in Figure 10.4. Figure 10.4 also shows a number of error statistics of the various
models. The error statistics corresponding to the optimal value are indicated by the
circle. Note that the subplot in Figure 10.4 contains rankings of the various models
which are based on Vapnik’s measure. The figure also contains two additional menu
bars, namely Add/Remove SVM and Results. In the Results menu bar the following
options are available.

e Choose other optimal parameter
This option allows the user to select an alternative model in the ranking plot.

o Display optimal parameter
Here the kernel parameters corresponding to the indicated index are displayed.

e Plot best SVM
The model corresponding to the selected or optimised parameter is displayed
in a separate figure. This figure enables all the performance monitoring and
features that are available (see Section 10.5).

o Save results
The results from the optimisation routine can be saved in a data file.

o Return optimal parameter
When the user is satisfied with the parameter optimised or selected, its value
can be returned to the user interface.

Another figure showing the performance of all constructed models is also given. In-
spection of this figure can give the user an idea of the differences in behaviour of the
different models. This figure might get too crowded for analysis, therefore in Figure
10.4 the menu bar Add/Remove SVM was added. This menu bar allows the user to
select a number of indexes in the ranking plot of Figure 10.4. The corresponding mo-
dels are then removed for the performance figure or added again if they were removed
previously. Furthermore, the menu bar has an option to reset all changes that have
been made.

10.2. APPLICATIONS OF PART I

<} Figure Mo. 1: Kemnel Parameter Error Statizsti
File Edit “iew Inzet Toolz “Window Help Remowvedddd S%M Resuls

155

=10 x|

DEsEdaE YA A/ |20

Performance of RBF kernel

1 T T

"'-\..u:J. T T T
=
L
< nog L L L L L
0 2 4 B 8 10 12
0.058 r T T .
& - -
w1 0.06 . * * . . 1
=
(W
0.04 1 1 1 1 1
0 2 4 B il 10 12
0.4 T T r . T
L)
_a .
o 02 * . 1
= - - . -
(i
|:| 1 1 1 1 1
0 2 4 B 8 10 12
20 r . . T
fa7)
=
Zmb o, . .]
]
Wl . .
0 1 1 1 o] 1
0 2 4 B g 10 12

Index Kernel Parameter

Figure 10.4: Interactive figure for optimising the kernel parameter.

10.2.3 Robustness

The robustness of the SVM for regression is determined by two parameters. The loss
function and the regularisation parameter. Note that the implementations of the e-
SVM and v-SVM consider the type of loss function as a parameter choice. Therefore
the user only needs to select either linear loss or quadratic loss (see Figure 10.2).

The regularisation parameter is also set in Figure 10.2. Three possibilities are
available. One can simply set the value or choose to use the estimation method
proposed in Chapter 4. Or one can choose to optimise the value using the L-curve

method.

156 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

10.3 Applications of Part 11

10.3.1 Generalisation ability

The implementation of the content in this chapter only involves the use of the mixed
kernel function. The mixed kernel is implemented as an option of the type of kernel.
Setting or optimising the kernel parameters of the mixed kernel is therefore no different
than for the other kernel functions. Consequently no further explanation is needed.

10.3.2 Data compression and outlier detection

Implementation of the applications of the data compression basically consists of Algo-
rithm H for outlier detection and Algorithm I for redundancy detection. As many of
the applications, our implementation is interactive and allows a considerable amount
of control for the user. The applications are very similar, therefore we give an example
of the outlier detection only. We further give the results of only one iteration.

Our implementation of the outlier detection approach gives a number of figures
and allows the user to adjust the cut-off level. In Figure 10.5 the frequency plots as
explained in Chapter 6 are shown. The cut-off level which is automatically determined
by the approach is displayed as well. Note that the user can adjust the cut-off level
using the control button. Adjusting the cut-off level also affects the identified outliers
shown in Figure 10.6. Two other figures are also shown. One contains graphs that
show the Lagrange multiplier values for each model as seen in Figure 10.7. The other
figure displays the error statistics. An example of that is given in Figure 10.8.

Based on the cut-off level and the standard deviation of the RMSEP, which is
displayed in Figure 10.6, the user can decide whether the identified indices should be
returned and whether a next iteration should be made.

10.3.3 Incorporating prior knowledge

In this chapter we discussed three possible ways of incorporating prior knowledge.

e Boundary information

The incorporation of boundary information is basically done by adding artifi-
cially generated data points to the data set to reflect the boundary information.
The user interface obtains this boundary information from a data file containing
the corresponding input and output data of the boundary data points. In or-
der to avoid run time errors, the dimensions of the boundary data are checked
beforehand. Chapter 7 contains an example of the use of this type of prior
knowledge.

o Multi-dimensional scaling
The second possibility was to use sensitivity analysis information for multi-
dimensional scaling purposes. In the user interface the sensitivity analysis in-
formation is entered per input dimension as seen in Figure 10.9. An example of
a multi-dimensional scaling application can be found in Chapter 7.

10.4. APPLICATIONS OF PART III 157

<} Figure Ho. 1: Detected Frequency of Dutlier - |I:I|l|
Suspected Outliers

20
151 H B8 7

: | 1}
gm' ° g 20 g |
= £ I
= g B Of

. 88 . 2o

ol g B 8 8 Hao B8 -

0 10 20 30 40 &0
Index
N 20
15 2(49%)

Frequency
=

m
T

15 i i
Increasing Detection Rate Heturnlndices'

Figure 10.5: Frequency plots.

[

o Use of variable noise level

The incorporation of a variable noise level means that the value of € varies
over the input space. Note that in the user interface we prefer using parameter
descriptions rather than the parameter name like . The variable € information
is obtained from a data file containing the value of € corresponding to a learning
data point. In order to avoid run time errors, the length of the variable € vector
is checked by the user interface. In Chapter 7 an example of this feature can be
found.

10.4 Applications of Part III

The research design requirements discussed in Part III of this thesis were mainly
aimed at investigating the capabilities the SVM may have in realising the objective.
Therefore most of the implementations were intended for experimental purposes only.
Ags the topics presented in Part III are still under investigation and only in an ex-
perimental stage, their applications have not been fully implemented in the software.
There are two applications from these chapters operational in the current implemen-
tation. The transductive modelling approach and the error statistics for evaluating
the overall performance of the model.

158 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

<} Figure Mo. 3: 5¥M Predictions - -10] x|
Sy Predictions (Std(RMSEP) = 0.0426)

Input

Figure 10.6: Predictions of SVMs and identified outliers.

10.4.1 Adaptivity

Of the three topics discussed in this chapter (novelty detection, adaptation levels,
transduction), only transduction was implemented. For the implementation of the
transductive learning we used Algorithm J. In our implementation the user is conti-
nuously given information about the current model as seen Figure 10.10, which shows
the progress of the transduction at a point in time.

10.4.2 Self-diagnostic capabilities

In the chapter on self-diagnostic capabilities, we discussed a number of error measures
for evaluation of the overall performance as well as investigated possible ways of
assigning a measure of uncertainty to a prediction. It has been shown in Chapter 9
that the classical confidence limits implementation will give only information about
the mean of the data. Therefore it would be better to use the error bar estimation.
However, since the references to the error bar estimation were only recently published
these results have not been fully investigated and no experiments have been done using
the error bar. Therefore, only the overall error measures have been implemented at
this time.

The overall error statistics discussed in Chapter 9 are automatically determined
and are given as byproducts of the implemented SVM routines. The figure displaying

10.4. APPLICATIONS OF PART III 159

<} Figure Mo. 2: Lagrange Multiplier Inspection - |EI|5|
100 pememesrmpdy eemuormd sl peew) e
= N R R =1 L R N BRI -l R
1 Opra-d-1-10 - Ted4-) qeatedien [fedudadpioia™ pjuliadeglels
w P T = B I R = B I 187 = B P AL S I
A A TR V- NN TR A T IR, Y [I R
-100 w w w I w
MM e e,
L1 [Y [Y i] [Y [I I 1 'y [I
& RTINS S IV S) = I SR A I I
T Diebdeit et e i
[L [T T B [T T T [T T T I T T
I AR [RIS | A R4 | AR A N 4
U.'I_1I:|D ik} Lix] Lih] Lih)
g 100 ——t=f /9 L o R 2] .+..1'
-] (v] T, o [T v] BT 1 o
L) [BT (B BT |] T [T) oY
T[] e d—] g ————T 1 47 iy | {njg oty
= ERARC-REEEEE-RERRAA-REAREE -N R
I BRE r| BRE r| Lo r| R BRE r
v - 100 w w * w * w
DN s T . T
(u] B TR [T T | (] [|+||.I’_D I T T
=R R <N A) I I i L
s e e e e
n R | R | IR | oo]]
o - 100 s dy, " ""w E— * —w *

Figure 10.7: Lagrange Multiplier plots.

the results has an option to view the overall error measures as well as to investigate
the residual distributions and display the normality plots.

Using the Performance Info menu bar in the figure displaying the results, the error
statistics of the learning machine can be viewed. Figure 10.11 contains an example.
Note that the number and percentage of support vectors are also displayed as well as
the CPU time information.

The residual information is a figure that consists of three graphs, like in Figure
10.12: Firstly, a histogram showing the distribution of the residuals; Secondly the
residuals plotted against the output data; Thirdly, the residuals plotted against one
of the input variables. The figure also has a menu bar with which the user can choose
which input variable is used in the third graph. In a separate figure the residual
information for the test data is shown.

In Figure 10.13, the normal probability plot is shown. The plot for the test data
is shown in a separate figure.

The interpretation of the information displayed by Figures 10.11, 10.12 and 10.13
has been discussed in Chapter 9.

160 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

<} Figure Ho. 4: Emor Statistics - -0l x|
s 1
- g _® . - - *
A1 S S 1
I(_)E 05 1 1 1 1
> 04— 0 B0 20 100
‘:! D 2 r * ..i‘ *a - - - *
E 1 1 1 1
Dj D.gf' 1 = 4y En 2R 100
Wogt I I -
m 'L L] L] - - * 4
o 04 1 1 1 1
1 20 a0 =, 20 100
- - - - - -)
o 0E T [¢ .
I:I 1 1 1 1
o 0.4 20 40 Ef 1 100
% DE I) * ..t' e * - - L
=
o 0 1 1 1 1
a 20 40 &0 Gl 100
% Support Yectors

Figure 10.8: Error statistics for outlier detection iteration.

10.5 Miscellaneous features

In the implementation of the various elements that are discussed in Part I, IT and 111,
a number of additional choices and applications was added. The additions include

e Scaling method
The scaling method can be set in the window for advanced setting (Figure 10.2).
By default all data will be range scaled. The range scaling method was described
in Chapter 3. Another scaling option is mean scaled. That means that the data
will be scaled such that it has zero mean and one as standard deviation. Of
course there is also the option to perform no scaling at all on the data.

o Cached kernel for batch modelling
In many application where multiple models are constructed, but the kernel and
its parameters are fixed for all models, it is useful to cache the kernel. The
kernel is determined only once, which saves computation time. The option to
cache the kernel is available as an advanced setting in Figure 10.2.

o Implementation of QP and LP optimisation
It has been shown by several authors that the SVM method can also be written
as a linear programming problem [10],[39],[78],[3]. By default the QP approach
is used. However, if the user prefers the LP formulation, this advanced choice

10.5. MISCELLANEQOUS FEATURES 161

<} Input Sensitivity Analpziz Results il

Wigight for T cyl

|u.3

Wigight for T mold
| 0.44

Wigight far t inj
|07z

Wieight for sh

| 1

Weight far p hald
| 05

iNieight far text

|1

]9

Figure 10.9: Entering sensitivity analysis information for a multi-dimensional scaling
application.

is available as shown in Figure 10.2. More information about the LP problems
can be found in [7].

o Implementation of subset modelling methods

It is important to notice that the computational speed of the SVM method
scales with the number of data points in the learning data set [32]. For large
data sets (£ > 1000) the problem arises that the kernel matrix K becomes too
large for the memory of standard computers. In [67] it was shown that for 50,000
examples, the kernel matrix would have 2.5 x 10°, that is 2.5 billion elements,
which will require 20 GB of memory if an eight-byte floating point representation
is used. Therefore, many implementations use decomposition approaches like
the chunking method [35], [106] or sequential methods like the SMO method
[69],[84]. We have implemented the chunking method with three possible ways
of constructing the subset, namely disjoint subsets of size k, overlapping subsets
of size k and p% of overlapping with the previous subset, and p randomly chosen
subsets of size k. The parameters k and p are user defined parameters.

e CPU time
The software keeps track of the CPU time for modelling and all other operations.
In the display results tool, this information can be viewed under the menu bar
Performance Statistics.

162 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

<} Figure No. 2: Transduction Progress 10| =|
File Edit “iew Insett Tool: ‘wWindow Help
D& YA A/ | @2pD
Transductive Learning
ED T T T T T T T
—+ + Complete Training Data
4B L e o @ Currant Training Data 7
HHHHE s s + Test data point
40+ ; —— Predicted Test Data 1
Jar .
30 .
2
= 25F .
o
20 .
181 .
10 .
5 - .
D Il Il Il Il Il Il Il
0.2 1] 0.2 0.4 0.6 0.5 1
[nput

Figure 10.10: Snapshot of the transductive modelling phase.

o Displaying and exporting results
The software has an application to view and interpret the results obtained.
The figure has two graphs. One displaying the learning data and the learning
machine’s predictions of it. The other shows the test data and their predicted
values. In Figure 10.14 we show a typical figure window containing the results for
an SVM learning machine. The figure has three additional menu bars, namely
Display Features, Performance Information and Printing Options.

The Add Features menu bar enables the user to view the following features:
— Display tube or margin. For regression type problems, the e-insensitive
zone is added to the graph containing the learning data and their predicted

values. In the case of classification problems, the margin is depicted by
means of colouring the background of the different classes.

— Display Support Vectors. The support vectors are indicated in the graph
containing the learning data.

— Reset Figure.

10.5. MISCELLANEQOUS FEATURES 163

=10 x|

<} Figure No. 3: Support ¥ector Machi
File Edit “iew Inzert Tool: ‘Window Help

ODEexEES M A A, 220

Complexity Information

Mumber of Support %ectors D14
Percentage of Support Yectors 2 14.00
Error Statistics (Learning set)

Correlation Coefficient : 0.9358
Standard Deviatian - 0.0605
Relative Error 01670
R, Statistic - [0.9721

Root Mean Sguare Error Prediction (RMSEF) : 0.0606

Error Statistics (Test set)

Correlation Coefficient 09967
Standard Deviation :0.0293
Relatiue_ E_rrnr - 0.0321
R, Statistic - [0.9933

Root Mean Sguare Error Prediction (RMSEF) : 0.0293

CPU Time Information

hodeling ;0538 =
Prediction c0.04 s
ErrorStats :0.00 =

Figure 10.11: Display of the performance statistics of a model.

Sometimes adding some of the features listed above, may make interpreta-
tion of the graphs difficult. This option resets the graphs to their original
state.

— Actual vs. Predicted. Often users prefer to view the actual output data
plotted against the predicted.

— Parallel Coordinates. It is possible to view high-dimensional data sets using
parallel coordinates [29]. Using this feature the user can visually observe
trends in the behaviour of the problem.

— Lagrange Multipliers. The weights obtained from the Lagrange multipliers
of the QP solution, are depicted in a separate window.

The various options available in the Performance Info menu bar have been dis-
cussed in detail in the previous section. We therefore give here an overview of

164 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

<} Figure Ho. 3: S¥M Standardized Residual -0l =]
File Edit Yiew Inzert Tool: *Window Help

DEEHES MNA A/ 2P0

A5
2 - - T e " "‘o.l
01] LU o
- . ¥ t. - }::
05 I SO ™ 1
: TR
D] E -2 . . - L L) - .
T Fredicted Learning Response
05 1=
E 21 . 'Io. j : s » - -
= . * . * . Yo *
I:I1 T E » . - "‘. - -
ﬁ I:I ." '& ;;fo.;:"..‘.o:. - -
15 ' o el e
. ’ .: e bt
0.2 ; -2 ' ' = '
1] 20 40 ¥

Residual distribution

Figure 10.12: Display of residual information of a model.

all options
— SVM Parameters. The parameter settings used during the learning phase
are displayed.

— Error Statistics. The support vector information, overall error measures
and CPU time information are displayed.

— Error Distribution. The normal distribution plots for both the learning
and test data are given.

— Residual Information. The residual plots for both the learning and test
data are given.

Finally, the Print Option menu bar has the following options to save the figure

— Eps File.

— Jpeg File.

— Bitmap File.

— MATLAB Figure File.

10.6. CONCLUSION 165

=) Figure No. 3: S¥M Error Distribution (Le =10l x|
File Edit “iew Inzet Toolz “Window Help

DEeEdE "A A/ 2o 0
Mormal Probability Plot
03597 === e T P T P T iy

099 n '
0.98

0.95
0.20

Frobahility
o o
(] =]
—_ n

=
(]
[d3]

005 ;.f-i.f;? AN SO TR MM B
002 p----- [R (R K R L. ——
it OO OO0t SO0 O A NN o
0003 boeoee-- [K booooo- P boooo-- dooooo-o R
2 -4 -1 0.4 o 0.4 1 14
Data

Figure 10.13: Display of the normality probability plots of a model.

10.6 Conclusion

In this chapter examples of the applications that have been implemented and ex-
amples of their use were given. The applications realising the learning requirements
(Part I) and the application robustness requirements (Part IT) have been fully imple-
mented. However, only applications in the operational requirements (Part IIT) that
are directly related to the learning process, namely overall error statistics and trans-
ductive learning, were implemented. The other applications involve implementations
around the learning process that require more research.

One advantage of the user interface for the applications illustrated in this chapter,
is that the user has a complete overview of which parameters to set and various
options that are available to improve the learning process. Furthermore, the user not
only has the option to optimise a number of the parameters but also has the ability
to control and interpret the results obtained from the optimisation routines.

The results can be viewed in a window allowing the user to add and interpret
various features like the e-insensitive tube and support vectors as well as a number
of performance information measures. An option to export results for reporting has
also been included.

The implemented applications illustrated in this chapter form a basis from which
an adaptive inferential sensor can be built. At The Dow Chemical Company the

166 CHAPTER 10. IMPLEMENTATION OF SOFTWARE

<} Figure No. 2: 5%¥M Results of sinf1d100.mat . 10| =|
File Edit “iew Insett Tools ‘wWindow Help Display Features Ferformance Information Print Options
D& YA A/ | @2pD
£Insensitive SYM (Learning Set == .)
15 T T T T T T T T T
E
S
=
=
=
=
@
-
DE Il 1 1 Il Il 1 Il Il 1
I} 0.1 0z 03 0.4 04 0R 0.7 o0& 0s 1
e-Insensitive SVM (Test Set==> .}
1 T T T T
; 0ak- B
S
I o -
_DE Il Il Il Il Il Il
0.2 0 0.2 0.4 0h& o0& 1 1.2
Input

Figure 10.14: Display of the the results of an SVM learning machine.

applications are used in conjunction with other learning machines like NNs and GP
[41] during inferential sensor development. In our opinion many features need to be
added to the software. For example, a feature selection step using kernel PCA [79].
In the course of time, the software will also include other learning machines such that
it will form a comprehensive modelling and data analysis tool.

Chapter 11

Conclusions

In this chapter we give a summary of the results, conclusions and implementations
concerning each of the design requirements stated in Chapter 1. The design require-
ments are categorised into three main types which are presented in three parts of the
design thesis.

In Part I on the learning requirements, we looked at those design requirements
that define and influence the learning capabilities of the inferential sensor.

o Complexity Control. We have shown that implementing the SVM as a learning
method enables the inferential sensor to control the complexity of the resulting
model. The control can be either explicitly done using the e-insensitive zone
or implicitly using the ratio of support vectors (v). We also gave algorithmic
pseudocodes for the optimisation of the two parameters € and v. The SVM
method is ideal for building inferential sensors that have direct control over the
complexity of the models.

o Working with high-dimensional data and spaces. Due to the curse of dimensio-
nality many learning methods experience loss of both computational and pre-
dictive performance. Using the implicit mapping to a higher dimensional space
through kernel functions, the SVM partially overcomes the computational pro-
blem. Furthermore, since the SVM’s learning capacity is not defined in terms
of the number of dimensions but in terms of the VC-dimension, the curse of
dimensionality with respect to the predictive performance is overcome to some
extent. We further discussed two types of kernel functions and also gave algo-
rithmic pseudocodes for optimisation of the kernel parameters. Therefore, the
SVM method using the kernel trick enables the inferential sensor to work with
high-dimensional data which is often encountered in the chemical industry.

e Robustness. The inferential sensor built on SVM-technology is made robust with
respect to noise and outliers. This is done by using the e-insensitive loss function.
We further derived a heuristic for estimating the regularisation parameter C.
This parameter is used as a trade-off between the error defined by the loss
function and the complexity defined by the smoothness of the model.

167

168 CHAPTER 11. CONCLUSIONS

In Part II, which is concerned with the application stability requirements, the design
requirements which aim at improving the stability and performance of the inferential
sensor are included.

o Generalisation ability. The interpolation and extrapolation abilities of the
model are mainly defined by the kernel function used by the SVM method.
We showed the advantages and disadvantages of using the two kernel function
discussed in Part I. We further introduced the mixed kernel approach which
improves the generalisation ability of the inferential sensor.

o Data compression and outlier detection. In recent years scientists expressed
a need for model-based approaches to detect outliers and redundancy in data
sets since classical approaches often fail due to the curse of dimensionality. It
has also been suggested by many that the unique properties of SVMs could
be used to develop such approaches. We investigated and developed on the
basis of SVM-technology a model-based approach for outlier detection and data
compression purposes. These new approaches enable the inferential sensor to
keep up with the needs of the industry.

o Incorporation of prior knowledge. For the inferential sensor to be stable in
unknown or low data density regions of the input space, it needs to incorporate
prior knowledge. However, this can only be done if the model is able to generalise
well. Since the mixed kernel approach has achieved just that, we can venture
into the field of incorporating prior knowledge. We have shown in the design
thesis how various kinds of prior knowledge can be incorporated into the SVM.

The Part III involves the operational requirements. These design requirements dis-
cussed here are aimed at making the inferential sensor trustworthy as well as increase
its lifespan.

e Adaptation. In order to extend the lifespan of a inferential sensor it needs to
become adaptive to changing conditions. That requires first of all the ability
to detect novelty. We have shown how SVMs can be used to perform novelty
detection and discussed various levels of adaptivity that can be implemented.

o Self-diagnostic capabilities. The inferential sensor needs to reflect its trustwor-
thiness. We gave an overview of a number of overall performance statistics that
can be used including a measure based on SLT, namely Vapnik’s measure. One
issue that still remains unanswered is the uncertainty level associated with a
prediction. We investigated three possibilities and discussed their potential use.

Finally, in Part IV, the software implementations of the pseudocodes presented through-
out the design thesis are shown. Furthermore, the effectiveness of the user interface
and interactive application tools are illustrated.

These design requirements give us a framework from which an adaptive and intel-
ligent inferential sensor can be developed. A schematic overview of this framework is
given in Figure 11.1. The diagram has two main phases namely, off-line and online.
The off-line phase has a learning part and a part consisting of theoretical knowledge

Original
Data Set

Data
Analysis

Data
Compression

Building
Inferential Sensor

Physical Laws,
Constraints

Conditions

Online

Novelty
Detection

I

Determine
Adaptation Level

Update
Data Set
&

History Set

Rebuild/Adapt
Inferential Sensor

—

Operational
Inferential Sensor

Monitoring
Inferential Sensor

Fault Detection
&

Pre-processing

Process

Adaptation | Operational

Figure 11.1: The Adaptive Online Inferential Sensor

169

and other information. The online phase consists of an operation part and a adapta-
tion part. Each part has various steps and actions to be taken.

When building the inferential sensor in the off-line phase of Figure 11.1, a number
of steps have to be performed: transforming the original data into a suitable data
format, data analysis, data compression, and building a inferential sensor model from
the learning data. The learning method uses a data set that has been analysed and
reduced, and incorporates information from the real world like bounds on variables

170 CHAPTER 11. CONCLUSIONS

and physical laws as well. The whole off-line phase is an iterative process in which
the user often will return to the data analysis or even original data set to make some
changes or adjustments. More than one model for the inferential sensor may also be
built and used online. The methods currently used in the first two steps are based
on classical statistics and are mostly linear methods. There are feature selection and
data reduction tools that are nonlinear methods and work well for small samples.
Nonlinear learning methods are becoming increasingly important every day. There
are also indications that the SVM method can be used for feature selection [79].

The online operation inferential sensor predicts and evaluates the outcome of new
data. After some time the process will give a measurement of the actual outcome of
the new data. This measurement is tested for any faults and pre-processed. Using
the predicted value and the measurement, the performance of the inferential sen-
sor is monitored and results sent back to the process if necessary. All the physical
information in the form of laws, constraints and conditions is known to the online
operational model. Simultaneously, the inferential sensor sends all the necessary in-
formation through to the adaptive online mode. The adaptive mode of the inferential
sensor tests online for any novel behaviour of the process. The level of adaptation is
then determined. Several levels of adaptation could exist, varying from no adaptation
to a complete off-line rebuilding of the inferential sensor.

There are various issues that require in our opinion a fair amount of further re-
search. One person alone cannot address every aspect let alone solve all the problems
that arise from it. In the conclusions of the various chapters we discussed them in
short. However, there are a number broader issues that require some extra consider-
ation.

e The whole concept of incorporating first principle information as a form of prior
knowledge requires extensive research.

e In order to use SVMs for regression in the chemical industry the problem of
calculating confidence limits of uncertainty levels needs to be solved. The sta-
tistical properties of SVMs also needs to be better understood.

e On the issue of adaptivity, we only investigated the potential of SVMs. A full
and thorough investigation as well as development of the software still has to
be done.

e There is one aspect of SVMs for regression that hampers its use in industry.
The optimisation routines need to be adjusted to accommodate large-scale data
sets. However most commercial and of-the-shelve packages do not allow the user
access to the source code.

e In our opinion for inferential sensor development it is not a matter of using
either SVMs, NNs or GPs. It is in fact a matter of using the method which is
best suited for the particular problem in question. Therefore, we feel that there
is a need to investigate combining and integrating these methods into a larger
software package.

171

Bibliography

[1]

[6]

[7]

8]

C.C. AGGArRWAL, P.S. YU, Outlier detection for high dimensional data, Pro-
ceedings of the SIGMOD Conference, 2001.

ASPENTECH, IQModel 1.0 User Guide, 1998.

K.P. BENNET, Combining support vector and mathematical programming meth-
ods for classification, Advances in kernel methods, Support vector learning, B.
Scholkopf, C.J. Burges and A.J. Smola (eds.), pp. 307-326, MIT Press, London,
1998.

B. BOSER, I. GUYON, V.N. VAPNIK, A training algorithm for optimal margin
classifiers, Fifth Annual Workshop of Computational Learning Theory, pp. 144-
152, Pittsburgh ACM, 1992.

V.L. BRAILOVSKY, O. BARZILAY, R. SHAHAVE, On global, local, mized and

neighborhood kernels for support vector machines, Pattern Recognition Letters
20, pp. 1183-1190, 1999.

B.D. BunDAY, G.R. GARSIDE, Optimisation methods in PASCAL, Edward
Arnold (Publishers) Ltd, London, 1987.

B.D. BunpAY, G.R. GARSIDE, Linear programming in PASCAL, Edward
Arnold (Publishers) Ltd, London, 1987.

C.J.C. BURGES, B. SCHLKOPF, Improving the accuracy and speed of support

vector learning machines, Advances in Neural Information Processing Systems
9, pp. 375-381, Morgan Kaufmann, San Mateo, CA, 1997.

C. CampPBELL, K.P. BENNET, A linear programming approach for novelty de-
tection, Advances in Neural Information Processing Systems 13, pp. 395-401,
MIT Press, 2001.

N. CRISTIANINI, J. SHAWE-TAYLOR, An introduction to support vector ma-
chines, and other kernel-based learning methods, Cambridge University Press,
2000.

V. CHERKASSKY, F. MULLIER, Learning from data, Concepts, theory, and
methods, John Wiley, New York, 1998.

172

BIBLIOGRAPHY 173

[12] W. CHu, S.S. KEErTHI, C.J. ONG, Bayesian inference in support vector re-
gression, Technical Report, CD-01-15, Control Division, Department of Me-
chanical Engineering, National University of Singapore, 2001.

[13] E.F. CopD, S.B. Cobpp, T.S. CLYNCH, Beyond decision support, Computer
World, July 26, 1993.

[14] V. DHAR, R. STEIN, Seven methods for transforming corporate data into busi-
ness intelligence, Prentice Hall, Upper Saddle River, NJ, 1997.

[15] H.W. ENcL, M. HANKE, A. NEUBAUER, Regularisation of inverse problems,
Kluwer Academic Publishers, Hingham, MA, 1996.

[16] T. EvciNiou, M. PoNTIL, T. P0oGGI10, A unified framework for reqularization

networks and support vector machines, A.I. Memo 1645, Artificial Intelligence
Laboratory, MIT, MA, 1999.

[17] R. FLETCHER, Practical methods of optimization, Second edition, John Wiley
& Sons, New York, 1989.

[18] S. FORTUNE, Voronoi diagrams and Delaunay triangulations, Computing in Eu-
clidean Geometry, D.Z. Du and F. Hwang (eds.), pp. 193-233, World Scientific,
1992.

[19] A. GAMMERMAN, V. Vovk, V.N. VAPNIK, Learning by transduction, Pro-
ceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp.
148-155, Morgan Kaufmann, San Francisco, CA, 1998.

[20] J.B. Gao, S.R. GunN, C.J. HARRIS, M. BROWN, A Probabilistic Framework
for Support Vector Machine Regression and Error Bar Estimation, Machine
Learning 46, pp. 71-89, 2002.

[21] G.H. GoLuB, U. vON MATT, Tikhonov regularization for larger scale prob-
lems, Scientific Computing, G.H. Golub, S.H. Lui, F.T. Luk and R.J. Plemmons
(eds.), Springer, Berlin, 1997.

[22] A.V. GriBOK, J.W. HiNES, R.E. UHRIG, Use of kernel based techniques for
sensor validation in nuclear power plants, Proceeding of the International Top-
ical Meeting on Nuclear Plant Instrumentation, Controls, and Human-Machine
Interface Technologies, Washington, DC, November, 2000.

[23] P.C. HANSEN, The L-curve and its use in the numerical treatment of inverse
problems, Computational inverse problems in electrocardiology, P. Johnston
(ed.), pp. 119-142, WIT Press, Southampton, 2001.

[24] T.J. HASTIE, R.J. TIBSHIRANI, Generalized linear models, Chapman and Hall,
London, UK, 1990.

[25] P. HavyTON, B. SCHOLKOPF, L. TARASSENKO, P. ANUZIS, Support vector
novelty detection applied to jet engine wvibration spectra, Advances in Neural
Information Processing Systems 12, pp. 946-952, MIT Press, 2000.

174 BIBLIOGRAPHY

[26] J.W. HINES, A.V. GRIBOK, I. ATTIEH, R.E. UHRIG, The use of regulariza-
tion in inferential measurements, Enlarged Halden programme Group Meeting,
Loen, Norway, May, 1999.

[27] P.J. HUBER, Robust statistics, John Wiley & Sons, New York, 1981.
[28] P.J. HUBER, Robust statistics: a review, Annals of Statistics 43, p. 1041, 1972.

[29] A. INSELBERG, T. CHOMUT, Convezity algorithms in parallel coordinates, Jour-
nal of the Association for Computing Machinery, 43(4), pp. 765-801, 1987.

[30] T.S. JAAKKOLA, D. HAUSSLER, Probabilistic kernel regression models, Pro-
ceedings of the 1999 Conference on Artificial Intelligence and Statistics, 1999.

[31] B. JEPsON, A. CoLLINS, A. EVANS, Post-neural network procedure to deter-
mine expected prediction values and their confidence limits, Neural Computation
and Applications 1, pp. 224-228, 1993.

[32] T. JoACHIMS, Making large-scale support vector machine learning practical,
Advances in kernel methods, Support vector learning., B. Schélkopf, C.J. Burges
and A.J. Smola (eds.), pp.169-184, MIT Press, London, 1998.

[33] E.M. JORDAAN, Development of adaptive online soft sensors, master’s thesis
TU Eindhoven, ISBN 90-5282-993-4, 1999.

[34] E.M. JORDAAN, G.F. SMITS, Estimation of reqularization parameter for sup-
port vector regression, Proceedings of the 2002 IEEE World Conference on Com-
putational Intelligence, pp.2785-2791, 2002.

[35] L. KAUFMAN, Solving the quadratic programming problem arising in support
vector classification, Advances in kernel methods, Support vector learning., B.
Scholkopf, C.J. Burges and A.J. Smola (eds.), pp. 147-168, MIT Press, London,
1998.

[36] M. KEARNS, The computational complezity of machine learning, MIT Press,
London, 1990.

[37] M. KEARNS, L. VALIANT, Cryptographic limitations on learning, formulae and
finite automata, Journal of the ACM, 41(1), pp. 67-95, 1994.

[38] M.J. KEARNS, U.V. VAZIRANI, An introduction to computational learning
theory, MIT Press, London, 1994.

[39] V. KECMAN, Learning and soft computing, Support vector machines, neural
networks, and fuzzy logic models, MIT Press, London, 2001.

[40] J.D. KEELER, R.B. FERGUSON, Commercial Applications of SoftSensors®:
The Virtual On — line Analyzer® and the Software CEM®, Proceedings of
the International Forum for Process Analytical Chemistry, Orlando, FL, Jan-
uary, 1996.

BIBLIOGRAPHY 175

[41] A. KorDON, G.F. SmiTs, E.M. JORDAAN, E. RIGHTOR, Robust inferential
sensors based on integration of genetic programming, analytical neural networks,
and support vector machines, Proceedings of the 2002 World Conference on
Computational Intelligence, pp. 896-901, 2002.

[42] E. KREYSZIG, Introductory functional analysis with applications, John Wiley &
Sons, New York, 1978.

[43] E. KREYSZIG, Advanced engineering mathematics, Seventh edition, John Wiley
& Sons, New York, 1993.

[44] J.T-Y. KwoK, The evidence framework applied to support vector machines,
IEEE Transaction of Neural Networks, 20(10), 2000.

[45] J.T-Y. KwoOK, Linear dependency between epsilon and the input noise in
epsilon-support vector regression, Proceedings of the International Conference
on Artificial Neural Networks (ICANN’01), pp. 405-410, Vienna, Austria, Au-
gust, 2001.

[46] M.H. Law, J.T. Kwok, Applying the bayesian evidence framework to v-
support vector regression, Proceedings of the European Conference on Machine
Learning, Brugge, September, 2001.

[47] P. LErRAY, P. GALLINARI, Feature selection with neural networks, Technical
report LIP6 1998/012, LIP6, 1998.

[48] C. L1, W.H. WoNG, Model-based analysis of oligonucleotide arrays: expression
index computation and outlier detection, Proc Natl Acad Sci USA 98, pp. 31-36,
2001.

[49] W.L. LUYBEN, Process modelling, simulation and control for chemical engi-
neers, McGraw-Hill Education, New York, 1999.

[50] D.J. MACKAY, Gaussian processes, A replacement for neural networks, Neural
Information Processing Systems Tutorial, Cambridge University, 1997.

[61] O.L. MANGASARIAN, Nonlinear programming, SIAM Classic in Applied Math-
ematics 10, Philadelphia, 1994.

[62] B.F.J. MANLY, Multivariate statistical methods, A primer, Second edition,
Chapman & Hall, London, 1998.

[63] G. MARTIN, Neural network applications for prediction, control and optimiza-
tion, Advances in Instrumentation and Control 50, ISA, 1995.

[54] MATLAB® Reference Guide, The MathWorks, Inc., Natick (MA), 1993.

[65] D. MATTERA, S. HAYKIN, Support vector machines for dynamic reconstruction
of a chaotic system, Advances in kernel methods, Support vector learning., B.
Scholkopf, C.J. Burges and A.J. Smola (eds.), pp. 211-242, MIT Press, London,
1998.

176

[56]

[57]

[58]

[64]

[65]

[66]
[67]

BIBLIOGRAPHY

D.C. MoONTGOMERY, E.A. PECK, Introduction to linear regression analysis,
Second Edition, John Wiley & Sons, New York, 1992.

S. MORRISON, The importance of automatic design technique in implementating
neural net intelligent sensors, ISA’96, 1996.

K.-R. MULLER, A.J. SMoLA, G. RATSCH, B. SCHOLKOPF, J. KOHLMORGEN,
V.N. VAPNIK, Predicting time series with support vector machines, Proceedings
of the International Conference on Artificial Neural Networks, pp. 999-1004,
Springer Verlag, Berlin, 1997.

K.-R. MULLER, A.J. SMoLA, G. RATSCH, B. SCHOLKOPF, J. KOHLMORGEN,
V.N. VAPNIK, Using support vector machines for time series prediction, Ad-
vances in kernel methods, Support vector learning., B. Schélkopf, C.J. Burges
and A.J. Smola (eds.), pp. 243-254, MIT Press, London, 1998.

K.-R. MULLER, S. MikA, G. RATscH, K. TsubpaA, B. SCHOLLKOPF, An
introduction to kernel-based learning algorithms, IEEE Transaction on Neural
Networks, 2(2), pp. 181-201, 2001.

N. MURATA, K.-R. MULLER, A. ZIEHE, S. AMARI, Adaptive on-line learning

in changing environments, Advances in Neural Processing Information Systems
9, p. 599, MIT Press, 1997.

N. MURATA, M. KAWANABE, A. ZIEHE, K.-R. MULLER, S. AMARI, Online

learning in changing environments with applications in supervised and unsuper-
vised learning, Neural Networks 15, pp. 743-760, 2002.

R.M. NEAL, Regression and classification using gaussian process priors (with
discussion), Bayesian statistics, J.M. Bernardo, et al. (eds.), pp. 475-201, Oxford
University Press, London, 1998.

R. NEEKLAKANTAN, J. GUIVER, Applying neural networks, Hydrocarbon pro-
cessing 9, 1998.

P. Nivogar, F. Girosi, T. PoGG10, Incorporating prior information in machine
learning by creating virtual exzamples, Proceedings of the IEEE, 86(11), pp. 2196-
2209, 1998.

A. O’HAGAN, Bayesian inference, Bayesian Inference 2B, 1994.

E. Osuna, R. FrREUND, F. GIROSI, Support vector machines: Training and
applications, A.I. Memo No. 1602, MIT, Cambridge, MA, 1997.

R.J. PELL, Multiple outlier detection for multivariate calibration using robust
statistical techniques, Chemometrics and Intelligent Laboratory Systems 52, pp.
87-104, 2000.

J.C. PLATT, Fast training of Support Vector Machines using Sequential Min-
imal Optimization, Advances in kernel methods, Support vector learning., B.
Scholkopf, C.J. Burges and A.J. Smola (eds.), pp. 185-208, MIT Press, London,
1998.

BIBLIOGRAPHY 177

[70] S.J. QIN, H. YUE, R. DUNIA, Self-validating inferential sensors with appli-
cation to air emission monitoring, Ind. Eng. Chem. Res. 36, pp. 1675-1685,
1997.

[71] J.A. RICE, Mathematical statistics and data analysis, Second edition, Duxbury
Press, Belmont, CA, 1995.

[72] J. RISSANEN, Modelling by shortest data description, Automatica 14, pp. 465-
471, 1978.

[73] B. SCHOLKOPF, P. BARTLETT, A.J. SMOLA, R. WILLIAMSON, Support vector
regression with automatic accuracy control, Proceedings of the 8-th International
Conference on Artificial Neural Networks, Perspective in Neural Computation,
Springer-Verlag, Berlin, 1998.

[74] B. ScHOLKOPF, P. BARTLETT, A.J. SMOLA, R. WILLIAMSON, Shrinking the
tube: a new support vector regression algorithm, Advances in Neural Information
Processing Systems 11, pp. 330-336, MIT Press, Cambridge, 1999.

[75] B. ScHOLKOPF, C.J. BURGES, A.J. SMOLA, Advances in Kernel methods,
Support Vector learning, MIT Press, London, 1998.

[76] B. SCHOLKOPF, S. Mika, C.J.C. BURGES, P. KNIrscH, K.-R. MULLER, G.
RARscH, A.J. SMOLA, Input space vs. feature space in kernel-based methods,
IEEE Transactions on Neural Networks, 1999.

[77] B. SCHOLKOPF, P. SIMARD, A. SMmoLA, V.N. VAPNIK, Prior knowledge in
support vector kernels, Advances in Neural Processing Systems 10, MIT Press,
Cambridge, MA, 1998.

[78] B. SCHOLKOPF, A.J. SMOLA Learning with kernels, Support vector machines,
regularisation, optimisation and beyond, MIT Press, London, 2002.

[79] B. SCHOLKOPF, A.J. SMOLA, K.-R. MLLER, Kernel principal component ana-
lysis, Advances in kernel methods, Support vector learning., B. Schélkopf, C.J.
Burges and A.J. Smola (eds.), pp. 327-352, MIT Press, London, 1998.

[80] B. SCHOLKOPF, R. WILLIAMS, A.J. SMOLA, J. SHAW-TAYLOR, J. PLATT,
Support vector method for novelty detection, Neural Information Processing Sys-
tems 12, pp. 582-588, MIT Press, 2000.

[81] X. SHAO, Model selection using statistical learning theory, doctoral thesis pro-
posal, unpublished, 1997.

[82] R. SHAO, E.B. MARTIN, J. ZHANG, A.J. MoRRIS, Confidence bounds for
neural network representations, Computers Chemical Engineering, 21 Suppl.,
pp. S1173-S1178, 1997.

[83] A.J.C. SHARKEY (Ed.), Combining artificial neural nets, ensemble and modular
multi-net systems, Springer, London, 1999.

178

[84]

[85]
[86]

[87]

[94]

[95]

[96]

[97]

[98]

BIBLIOGRAPHY

S.K. SHEVADE, S.S. KEERTHI, C. BHATTACHARYYA, K.R.K. MURTHY, Im-
provements to SMO algorithm for SVM reegression, IEEE Transactions on Neu-
ral Networks, 11(5), pp. 1188-1193, 2000.

G.F. SMITS, personal communication, 2002.

G.F. SmiTs, E.M. JORDAAN, Using miztures of polynomial and RBF kernels
for support vector regression, Proceedings of the 2002 IEEE World Conference
on Computational Intelligence, pp. 2192-2198, 2002.

A.J. SMOLA, Regression estimation with support vector learning machines, mas-
ter’s thesis TU Berlin, 1996.

A.J. SMOLA, Learning with kernels, Doctoral thesis TU Berlin, 1998.

A.J. SmoLa, N. MUrATA, B. ScHOLKOPF, K.-R. MULLER, Asymptotically
optimal choice of e-loss for support vector machines, Proceedngs of the 8th
International Conference on Artificial Neural Networks, Perspectives in Neural
Computing, pp. 105-110, Springer-Verlag, Berlin, 1998.

A.J. SMOLA, B. SCHLKOPF, On a kernel-based method for pattern recognition,

regression, approximation and operator inversion, Algorithmica 22, pp. 211-231,
1998.

A.J. SMOLA, B. SCHLKOPF, A tutorial on support vector regression, NC2-TR-
1998-030, NeuroColt2 Technical Report Series, 1998.

A.J. SmoLA, B. SCHLKOPF, From regularization operators to support vector
kernels, Advances in Neural Information Processing Systems 10, pp. 343-349,
San Mateo, CA, 1998.

A.J. SmMoLA, B. ScaLKOPF, K.-R. MULLER, The connection between regular-
ization operators and support vector kernels, Neural Networks 11, pp. 637-649,
1998.

P. SovLic, Probabilistic interpretations and Bayesian methods for support vec-
tor machines, Proceedings of the International Conference on Artificial Neural
Networks (ICANN’99), pp. 91-96. IEE Publications, 1999.

R.H. SPRAGUE, Jr., E.D. CARLSON, Building effective decision support sys-
tems, Prentice-Hall, Inc., London, 1982.

STAN ACKERMANS INSTITUUT, Notitie: Op weg naar promotie op proefontwerp,
TU Eindhoven, Eindhoven, 1994.

G. STRANG, Linear algebra and its applications, Third edition, Harcourt Brace
Jovanovich College Publications, New York, 1988.

J. TANG, Z. CHEN, A. Fu , D. CHEUNG, A robust outlier detection scheme in
large data sets, Proceedings of the Sixth Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD’02), Taipei, 6-8 May, 2002.

BIBLIOGRAPHY 179

[99] D.M.J. Tax, A. YPMA, R.P.W. DUIN, Support vector data description applied
to machine vibration analysis, Proceedings of the Fifth Annual Conference on

the Advanced School for Computing and Imaging, Heijen, The Netherlands, pp.
398-405, 1999.

[100] M.T. THAM, G.A. MONTAGUE, J.J. MORRIs, P.A. LANT, Soft-sensors for
process estimation and inferential control, Journal of Process Control 11, Jan-
uary, 1991.

[101] A.N. TikKHONOV, On solving ill-posed problems and method of regularization,
Doclady Akademii Nauk USSR 153, pp. 501-504, 1963.

[102] N. TisHBY, E. LEVIN, S.A. SoLLA, Consistent inference of probabilities in
layered Networks: Predictions and generalization, Proceedings of International
Joint Conference of Neural Networks, 2, pp. 403-409, IEEE, Washington, DC,
1989.

[103] K. Tsupa, G. RATscH, S. Mika, K.-R. MULLER, Learning to predict the
leave-one-out error of kernel-based classifiers, Proceedings of the International
Conference on Artificial Neural Networks (ICANN’01), pp. 331-338, Springer
Lecture Notes in Computer Science, 2001.

[104] L.G. VALIANT, A theory of the learnable, Communications of the ACM, 27(11),
pp. 1134-1142, 1984.

[105] V.N. VAPNIK, L.-Y. BoTTOU, Local algorithms for pattern recognition and
dependencies estimation, Neural Computation, 5(6), pp. 893-908, 1993.

[106] V. VAPNIK, The nature of statistical learning theory, Springer, New York, 1995.

[107] V.N. VAPNIK, S.E. GOLLOWICH, A. SMOLA, Support vector method for func-
tion approzimation, regression estimation and signal processing, Advances in
Neural Information Processing Systems 9, pp. 281-287, 1997.

[108] V.N. VAPNIK, Statistical learning theory, John Wiley & Sons, 1998.

[109] V.N. VAPNIK, E. LEVIN, Y. LECUN, Measuring the VC dimension of a lear-
ning machine, Neural Computation, 10(5), 1994.

[110] C.K. WILLIAMS, Prediction with Gaussian processes: From linear regression to
linear prediction and beyond, Learning in Graphical Models, M.I. Jordan (ed.),
pp. 295-621, MIT Press, Cambridge, MA, 1998.

[111] C.K.I. WILLIAMS, M. SEEGER, The effect of the input density distribution on
kernel-based classifiers, Proceedings of the Seventeenth International Conference
on Machine Learning, Morgan Kaufmann, Philadelphia, 2000.

[112] X. Xu, J.W. HiNEs, R.E. UHRIG, Sensor validation and fault detection using
neural networks, Proceedings of the Maintenance and Reliability Conference
(MARCON 99), Gatlinburg, TN, May 10-12, 1999.

180 BIBLIOGRAPHY

[113] L.A. ZADEH, Fuzzy sets, Information and Control 8, pp. 338-353, 1965.

[114] L.A. ZADEH, Soft computing and fuzzy logic, IEEE Software, November, pp.
48-56, 1994.

Samenvatting

Het hoofddoel van het onderzoek was om de technologie die nodig is voor de bouw en
het gebruik van adaptieve inferential sensors te onderzoeken en verder te ontwikkelen.
Inferential sensors zijn wiskundige modellen die in de industrie gebruikt worden om
de uitkomst van processen te voorspellen. Aangezien de processen niet statisch zijn,
is het nodig dat de inferential sensors adaptief zijn ten opzichte van veranderende
omstandigheden teneinde een langere periode toepasbaar te blijven. De technologie
die nodig is voor de ontwikkeling van een adaptieve inferential sensor vereist de in-
tegratie van de operationele- en applicatie-eisen met de software die gebruikt wordt
voor modellering. Daarom werd als een eerste stap in dit ontwerpproject de vol-
gende ontwerpeisen geidentificeerd: (1) controle over de complexiteit, (2) vermogen
om hoog-dimensionele data te gebruiken, (3) robuustheid, (4) generalisatievermogen,
(5) data-reductie en outlier-detectie (6) inachtneming van a priori kennis (voorkennis),
(7) zelfdiagnose en (8) adaptief vermogen.

Een nieuw soort leermachine, de Support Vector Machine (SVM), wordt gebruikt
omdat deze het beste aan de eerste drie ontwerpeisen voldoet. Deze drie ontwerpeisen
karakteriseren het leervermogen waaraan inferential sensors moeten voldoen. Dit
wordt besproken in Deel I van het proefontwerp. In het proefontwerp hebben we ons
geconsentreerd op regressie-problemen, omdat regressie de meest algemene toepassing
is die in de chemische industrie voorkomt.

De ontwerpeisen (4), (5) en (6) worden geassocieerd met de stabiliteitseisen in
applicaties die in Deel II van het proefontwerp worden besproken. In dit deel wordt
een nieuwe soort kernfunctie geintroduceerd. Het is een combinatie van een radiale
basisfunctie en een polynoomkern die het generalisatievermogen van het inferential
sensor model, gebouwd met behulp van SVM technologie, verhoogt. Het verbeterde
generalisatievermogen stelt ons nu in staat om bepaalde soorten voorkennis, die alge-
meen verkrijgbaar zijn in de chemischie industrie, te gebruiken. In onze implementatie
van de data-reductie en outlier-detectie applicaties maken we gebruik van een nieuwe
model-gebaseerde aanpak om outliers en overbodige data te herkennen.

In Deel III van het proefontwerp dat handelt over de operationele eisen, worden de
laatste twee ontwerpeisen, (7) en (8), besproken. Wij hebben verschillende manieren
onderzocht om de functionering van een inferential sensor te evalueren. Voor een infe-
rential sensor is het niet alleen van belang om zijn eigen functionering te controleren
en een diagnose te stellen, maar ook dat er een niveau van onzekerheid wordt toege-
kend aan een voorspelling. In het proefontwerp geven we een overzicht van een aantal
foutstatistieken om de globale functionering te meten. Daarnaast bespreken wij ook

181

182

een drietal mogelijkheden voor de berekening van een onzekerheidsniveau behorend
bij een gegeven voorspelling. We verstrekken een aantal adaptatieniveaus en geven
daarnaast een methode voor novelty-detectie, gebaseerd op SVM technologie.

Voor de ontwikkeling van adaptieve inferential sensors is het nodig dat de para-
meters die de leermachine gebruikt, gemakkelijk bepaald of geschat kunnen worden.
In Deel I van het proefontwerp stellen we een heuristische methode voor om de regu-
lariseringsparameter van de SVM voor regression te schatten. Verder worden al-
goritmische pseudocoden voor de optimalisering van de parameters gegeven in de
hoofdstukken waar deze parameters worden besproken.

Tenslotte, in Deel IV van het proefontwerp wordt een software tool gepresen-
teerd die de SVM als leeralgoritme combineert met de ontwerpeisen. Een aantal
ontwerpeisen, zoals outlier-detectie en data-reductie, zijn geimplementeerd als aparte
applicatie tools. Uiteraard zijn de algoritmen voor de optimalisering van de SVM
parameters ook geimplementeerd. Verder heeft de software tool een user interface
die de gebruiker assisteert om parameters in te stellen of te optimaliseren evenals
andere modellerings keuzes te maken. De gebruiker wordt daarnaast in staat gesteld
om de resultaten te onderzoeken, te analyseren en te interpreteren. De software is al
een geruime tijd in gebruik bij The Dow Chemical Company en voorbeelden van de
toepassingen worden gegeven.

Acknowledgements

Since I can remember I wanted to study abroad and obtain a Ph.D. I also had a
keen interest in the usefulness of mathematics and chemistry from an early age. My
wildest dreams came true when I got the opportunity to study in Holland and conduct
my research in mathematics within the chemical industry. Here I want to give my
gratitude to those who made it possible for me to come this far.

Dr. Guido Smits deserves a special word of thanks. Not only did he supervise
the research project, he also taught me to appreciate the elegance of theory. I look
back with joy to our lengthy discussions on Support Vector Machines (SVMs) and the
insight I obtained from his broad knowledge on machine-learning issues. I sincerely
hope that in the coming years we will work together on many occasions where I can
further learn much from his knowledge. Our numerous debates on world politics and
social-economical issues have been equally enjoyed.

I also want to express my gratitude to Prof.dr. Klaus-Robert Miiller, Prof.dr.
Emile Aarts, Prof.dr. Jaap Wessels, and the rest of the review-board for their interest,
useful remarks and willingness to be part of this research. Dr. Arthur Kordon, Dr.
Jaap den Doelder, and Dr. Randy Pell of The Dow Chemical Company, thank you for
your keen interest in my work, your support, and valuable comments. Arthur, thanks
for your suggestions on how to make the software more efficient and for finding those
elusive bugs.

To all my colleagues at Dow-PTC 2 in Terneuzen, a special thank you for your
hospitality and support as well as your patience in correcting my Dutch. I specially
want to thank you for letting me speak Afrikaans, my mother tongue, on Fridays. 1
hope that we can continue this habit in the future.

I want to thank my family and friends, the Dutch and South-Africans, from the
bottom of my hart. Without you I would not have been able to come to Europe
or have been able to stick to my ambitions. A special word of thanks goes to my
parents, Bert and Martie Jordaan, for everything they have done for me. You not
only stimulated me to use the wit and talents bestowed upon me, but also supported
me wholeheartedly in every decision I have ever made.

I know that the knowledge and sense I have is only temporary. At any moment
my Maker could take it away from me. Therefore I endeavour to be a worthwhile
human being.

183

Dankwoord

Sedert ek kan onthou wou ek in die buiteland gaan studeer het en n doktersgraad
behaal het. Van jongs af het die toepaslikheid van wiskunde en chemie my gefassi-
neer. My stoutste verwagtinge is egter oortref toe ek die geleentheid gekry het om
in Nederland my navorsing in wiskunde te doen, en dit boonop binne die chemiese
industrie. Hiermee wil ek die mense bedank wat daartoe bygedra het dat ek 'n sukses
daarvan kon maak.

Dr. Guido Smits verdien hierby n besonder woord van dank. Nie alleen het hy die
begeleiding grotendeels behartig nie, maar het hy ook by my ’n waardering gekweek
vir die elegansie van teorie. Met genoé kyk ek terug na ons lang en interessante
gesprekke oor SVMs en die insig wat ek gekry het uit sy breé vlak van vakkennis. Ek
hoop dat ek in die komende jare nog baie uit sy bron van kennis kan put. Verder het
ek ons urelange debatte oor wéreld politiek en maatskaplik-ekonomiese probleme baie
geniet,.

Prof.dr. Klaus-Robert Miiller, Prof.dr. Emile Aarts, Prof.dr. Jaap Wessels, en
die ander lede van die promosiekommissie wil ek bedank vir hulle betrokkenheid,
opmerkinge en bereidwilligheid om mee te werk aan hierdie ondersoek. Aan Dr.
Arthur Kordon, Dr. Jaap den Doelder, en Dr. Randy Pell van The Dow Chemical
Company wil ek baie dankie sé vir hulle belangstelling in my werk, hulle ondersteuning
en waardevolle kommentaar. Arthur, baie dankie vir al die voorstelle om die sagteware
te verbeter en vir die opsporing van ontwykende programmeerfoute.

Ek wil ook al my kollega’s by Dow-PTC 2 in Terneuzen bedank vir hul vrien-
delikheid en ondersteuning, asook hulle geduld om my Nederlands te verbeter. Baie
dankie dat julle op Vrydae my die geleentheid gegee het om Afrikaans, my moedertaal,
te kon praat. Ek hoop dat ons die gewoonte in die komende jare kan voortsit.

Dan wil ek my familie en vriende, Nederlanders sowel as Suid-Afrikaners, uit die
diepte van my hart bedank. Sonder julle sou ek nooit so ver as Europa gekom het nie,
of dit ooit so lank hier kon volhou nie. In die besonder wil ek my ouers, Bert en Martie
Jordaan, bedank vir alles wat hulle vir my gedoen het. Hulle het my gestimuleer om
my Godgegewe verstand en talente te gebruik, en ook in elke besluit wat ek ooit
geneem het ten volle ondersteun.

Ek weet dat die kennis en verstand waaroor ek beskik net tydelik is. Enige dag kan
my Skepper dit van my wegneem. Daarom streef ek daarna om veral 'n waardevolle
mens te wees.

184

Curriculum Vitae

PERSONAL DETAILS

Name: Elsa Jordaan
Date of birth: June 15, 1974
Place of birth: Groblersdal, South Africa.

SCHOOL EDUCATION

1981-1987: Toitskraal Primary School, Marble Hall, South Africa.
1988-1992: Piet Potgieter High School, Potgietersus, South Africa.

UNIVERSITY EDUCATION

1993-1995: Potchefstroom University for Christian Higher Education (CHE),
South Africa
Applied Mathematics and Chemistry (Bachelor’s degree)

1996: Potchefstroom University for CHE, South Africa
Applied Mathematics (Honours degree)

1997: Potchefstroom University for CHE, South Africa
Department of Mathematics and Applied Mathematics
Temporary teaching position
Follow courses in preparation for study abroad

1997-1999: Eindhoven University of Technology, The Netherlands
Stan Ackermans Institute
Postgraduate course: Mathematics for Industry
(master’s degree)

1999-2002: Eindhoven University of Technology, The Netherlands
Department of Mathematics and Computing Science
Research assistant,
work performed at Dow Benelux B.V. in Terneuzen

185

