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ABSTRACT 
 
The kernel neuron is the generalization of classical 
McCulloch-Pitts neuron using Mercer kernels.  In order 
to control generalization ability and prune structure of 
kernel neuron, we construct a regularized risk functional 
including both empirical risk functional and Laplace 
regularization term in this paper.  Based on the gradient 
descent method, a novel training algorithm is designed, 
which is referred to as the sparse training procedure for 
kernel neuron.  Such a procedure can realize three main 
ideas: kernel, regularization (or large margin) and 
sparseness in the kernel machines (e.g. support vector 
machines, kernel Fisher discriminant analysis, etc.), and 
can deal with the nonlinear classification and regression 
problems effectively. 

Keywords: kernel neuron, support vector machine, 
sparseness, regularization. 
 
 
 

1. INTRODUCTION 
 
In the artificial neural networks the basic element is 
McCulloch-Pitts neuron (or M-P neuron)[1].  Rosenblatt 
[2] proposed the first learnable procedure: Perceptron, 
which could only deal with the linearly separable cases as 
a simple linear classifier.  In order to handle the more 
complicated real-world problems, many models and their 
training procedures are introduced, e.g. back propagation 
training method for multilayer perceptron [3], adaline with 
some nonlinear transform [4], and radial basis function net 
(RBF)[5].  

Recently, several kernel-based machines for nonlinear 
problems, such as support vector machines (SVM)[6-8], 
kernel Fisher discriminant analysis (KFD)[9], and large 
margin kernel pocket algorithm [10], are gaining more and 
more attention in the nonlinear classifier designing.  
There exist three attractive concepts: kernel idea, large 
margin or regularization, and sparseness.  

The kernel idea is an effective technique to realize the 

nonlinear transform implicitly.  Xu et al [11] introduced 
the kernel neuron by generalizing M-P neuron through 
Mercer kernels, and constructed a simple training 
algorithm based on the gradient descent method.  Kernel 
neuron and its training procedure can be considered as a 
unified framework for three nonlinear techniques 
mentioned above in the neural networks. 

The regularization technique developed by Tikhonov 
& Arsenin [12] is to handle ill-posed problems.  Such a 
technique has widely been used in neural networks.  It 
has been found that adding a proper regularization term to 
an objective functional can result in significant 
improvements in net generalization [13], and also can 
prune the structure of nets [14].  There mainly are three 
usual regularization terms: the squared or Gaussian, 
absolute or Laplace, and normalized or Cauchy 
regularization terms. With respect to the effeciency of 
supervised learning, Saito and Nakano[13] gave a detialed 
comparison on the three regularizaion terms and different 
learning algorithms, and pointed out that the combination 
of the squared regularization term and the second order 
learning algorithm drastically improves the convergence 
and generalization ability.  Williams [15] concluded that 
the Laplace regularization term is more appropriate than 
the Gaussian one from the viewpoint of net pruning.  
Ishikawa [16] used the Laplace regularizer to construct a 
simple but effective learning method called a structural 
learning with forgetting in order to pruning the forward 
neural nets. 

In this paper, in order to improve the generalization 
ability and to get a sparse discriminant or regression 
function for kernel neuron, we add the Laplace 
regularization term to the original empirical risk functional 
defined in the paper of Xu et al [11].  Based on gradient 
descent approach, a training algorithm is constructed.  It 
can be referred to as the sparse training procedure for 
kernel neuron, and can realize three main ideas in support 
vector machines.  As a nonlinear technique, it can handle 
both nonlinear classification and regression problems 
effectively.  
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2. DEFINITION OF KERNEL NEURON 
 
This paper is devoted to two problems: classification and 
regression problems, in neural networks.  Let  
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while for the regression problem, suppose 
,   1,...,iy R i l∈ = . 

The classical M-P neuron is defined as 
( ) (( ) )o f b= ⋅ +x w x               (3) 

where o is the output of neuron, x is the input vector, w 
and b are the weight vector and threshold respectively.  
Function f implies the transform function.  For the M-P 
neuron, f is a hard limiting function, i.e. the sign function.  
In neural networks, f is a continuously differentiable and 
monotone function, e.g., sigmoid function and linear 
function.  

In the paper of Xu, et al [11], a kernel version of M-P 
neuron is defined as  
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where liRi ,....2,1, =∈α  are the coefficients 
corresponding to each sample, ( , )ik x x is the kernel 
function satisfying Mercer conditions, e.g., polynomial 
kernel, RBF kernel and two layers neural net kernel [7,8]. 

Note that generally speaking the input-output 
relationship is nonlinear in kernel neuron.  Only in the 
case when the transform function is linear and kernel 
function is the linear kernel (namely ( , ) T

i ik =x x x x ), the 
relationship is linear, and can be considered as the 
equivalent form of M-P neuron.  

The kernel neuron utilizes the nonlinear kernels to 
realize the nonlinear transform form the original input 
vector space ( nR ) to the real number space ( R ). 
 

3. SPARSE TRAINING PROCEDURE 
 FOR KERNEL NEURON 

 
For the kernel neuron, Xu et al [11] defined an empirical 
functional and constructed a training algorithm based on 
standard gradient descent scheme.  Such a training 
procedure only realizes the kernel idea.  Specially, it is 
difficult to control the generalization ability and to obtain 
a sparse decision function.  Adding a proper 
regularization term in risk functional to decay the 
connection weights is simple way to pruning weights 
without complicating the learning algorithm much [14].  

In kernel neuron, such a pruning implies that a sparse 
representation would occur, i.e., many iα  would be close 
to zeros.  Simultaneously regularization method also can 
improve the generalization and convergence of training 
procedure.  

Thus, we define a regularized risk functional 
consisting of empirical risk (square error summation 
between the actual output and desired output) and the 
Laplace regularization term, that is, 
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where 1[ ,..., ]T
lα α=α ,μis the regularization parameter. 

Now our goal is to construct an effective algorithm to find 
out the coefficient vector α  and threshold β  that 
minimize risk functional (5).  This can still be done by 
the standard gradient descent scheme.  The gradient of (5) 
is, 
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where 
1
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i
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=

= +∑ x x  , ( )jf y′  is the first 

derivative of ( )jf y , and sgn is the sign function. 
Like the back-propagation training algorithm in the 

forward neural networks, we also use single sample 
correction and add a momentum term in iterative 
procedure.  Therefore, a novel iterative procedure for 
kernel neuron could be rewritten as: 
 
Algorithm-1 (SKN-1): 
1. Let t=0 and ( ), ( )m t tα β  be arbitrary. 

2. Pick up some sample jx . 
3. Set t=t+1. 
4. Calculate  
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6. Update  
( ) ( 1) ( )

( ) ( 1) ( )
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7. If 2 2( ) ( )m t tα β ε∆ + ∆ <  or maxt t≥ , then stop; 
otherwise, go to step 2.  

   

 50  



where m=1,…,l, 1λ is the learning rate, 2 1λ λ µ=  , 

3λ denotes the momentum parameter, εis a threshold to 
stop algorithm, and tmax is the maximal iterations.  

Ishikawa [16] pointed out that in neural nets such a 
weight decay is constant in contrast to exponential decay 
[17] and unnecessary connections fade away.  This means 
that a large number of parameters are close to zeros and 
the sparseness happens. Particularly when 2 3 0λ λ= = , 
this approach is the same as the simple training procedure 
for kernel neuron [11].  

Ishikawa [16] also advised a selective pruning 
procedure to make only the connection weights decay 
whose absolute values is below a threshold θ after a 
training procedure listed above.  Another regularized risk 
functional for kernel neuron could be constructed as, 
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Such an idea can improve the goodness of fit of a model 
and decay the small values further.  This means that a 
more sparse representation can occur.  The novel sparse 
training procedure would be comprised of two steps as 
follow:  
 
Algorithm-2 (SKN-2): 
1. Algorithm-1 listed above. 
2. Algorithm-1, but including a threshold θ  for α . 
 

In this paper, we call two training algorithms above 
as the sparse training procedure 1 and 2 for kernel neuron, 
or simply SKN-1 and SKN-2 respectively. 

As in the sparse LS-SVM [18], we refer to the 
1{ ,..., }lα α  as the spectrum of kernel neuron.  The 

sparseness means that many components of spectrum are 
very close to zeros.  If such components are forced to 
zero, the final discriminant function changes little.  In 
this paper, a proper threshold δ  is set to impose some 
components zeros.  If iα δ≥ , this sample or vector is 
still called as support vector.  Now the final discriminant 
or regression function can be represented as  

  1
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In the case when we handle binary classification problem, 
for some new input vector x, if ( ) 0f >x , then 1ω∈x , 
otherwise 2ω∈x . For the regression problem, we 
consider ( )f x  as the regression result. 
  

4. EXPERIMENT RESULTS AND ANALYSIS 
 
To evaluate the performance of our new training procedure, 
we devised three artificial data sets: a linearly separable 

cases, a nonlinear case with 10 misclassified samples, and 
a nonlinear regression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: The spectra from different approaches for the
linear case. 

Fig.1: The separation hyperplanes from different algorithms
for the linear case. 
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The example in Fig.1 is a linearly separable case,  
where there exist 79 samples of two classes (marked by 
crosses and points in the figure) which can be classified 
without error by several linear classifiers.  Fig.1 
illustrates the seperation lines obtained by using KN [11], 
SKN-1, SKN-2 and SVM-light method [19] with linear 
kernel ( , ) Tk =x y x y , where the circles indicate the 
support vectors (or SV).   

Fig.2 shows the corresponding spectra of these 
learning appproaches.  In KN (Fig.2 (a)), the spectrum is 
not sparse obviously.  In Fig.2 (b) and (c), the large 
number of components are close to zeros and the 
sparesness occures in the dicision function.  Fig. 2 (d) 
illustrates the spectrum of SVM-light method [19]. 

For the nonlinear problem, we design an example 
which contains ten misclassified samples using some 
linear classifiers.  Fig.3 shows the decision boundaries 
from KN, SKN-1, SKN-2 and SVM-light with the linear 
kernel.  Note that there exists two contradiction samples, 
i.e. , ,i j i jy y i j= ≠ ≠x x .  We find out that the number 
of support vectors from our sparse training algorithm is 
less than that from SVM-light (C=1000, other parameters 
are default values).  This example demonstrates that our 
algorithm works well for the nonlinear problem. 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
To the nonlinear regression problem, a function  

22 0.5( ) (1 2 ) xf x x x e−= − + is used [13].  In the experiment, 
a value of x is randomly generated in the range from –4 to 
+4, and the corresponding value of function is computed 
and added a guassian noise with a zero mean and a 

variance 0.04.  The total number of training samples is 30.  
When a radial basis function kernnel with width 1.0 is 
utilized, Fig. 4(a) demonstrates the regression result from 
SKN-2, where the solid curve is the regression result, the 
dashed line true function, and the crosses are actual 
samples.  In Fig. 4 (b), the result comes from SVM with 
RBF kerenl (width =0.4), C=100.0, 0.2ε = . In both (a) 
and (b), the circles denote support vectors.  It is easy to 
see that the number of support vectros form SKN-2 is less 
than that form SVM, that is 6 versus 16.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Three artificial examples above show sparse training 
procedure can work well for both nonlinear calssification 
and regress problems.  It is possible that our methods can 
obtain more sparse function than SVM does.  
 

5. DISCUSSIONS AND CONCLUSIONS 
 
The kernel neuron is the nonlinear generalization of 
neuron with kernels.  In order to control the 
generalization ability and obtain the sparse decision 
function, two regularized risk functionals are defined for 
kernel neuron, which consist of the emperical risk 
fuctional and Laplace regularization term.  Based on the 
gradient descent scheme, two sparse training procedures 
are developed, i.e. SKN-1 and SKN-2.  The new methods 
can be regarded as a new general-purpose nonlinear 
learning machine, since they can be applied for both 
nonlinear pattern recognition and regression problems.  
Experiments on artifical data sets show that they work 
well on both linearly seperatable and non-seperatable data, 
and also on regression problem. 

For three usual kinds of kernel functions, our kernel 
neuron and its sparse training procedures can implement 
the similar performances of multi-layer perceptrons (the 
kernel of two layer neural networks), radial basis function 
net (RBF kernel) and the adaline with nonlinear 

Fig.3: The separated hyperplanes from different algorithms
for nonlinear case. 

Fig.4: The nonlinear regress example with SKN-2 and
SVM. 
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preprocessors (ploynomial kernel).  Furthermore SKN 
protects us from designing hidden layer node, clustering 
the centers and constructing the polynomial transfrom, etc.    
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