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Abstract

We discuss the problem of ranking instances where an instance is asso-
ciated with an integer from 1 té. In other words, the specialization

of the general multi-class learning problem when there exists an order-
ing among the instances — a problem known as “ordinal regression”
or “ranking learning”. This problem arises in various settings both in
visual recognition and other information retrieval tasks. In the context
of applying a large margin principle to this learning problem, we intro-
duce two main approaches for implementing the large margin optimiza-
tion criteria fork — 1 margins. The first is the “fixed margin” policy in
which the margin of the closest neighboring classes is being maximized
— which turns out to be a direct generalization of SVM to ranking learn-
ing. The second approach allows for 1 different margins where the
sum of margins is maximized, thus effectively having the solution bi-
ased towards the pairs of neighboring classes which are the farthest apart
from each other. This approach is shown to reduceS®' M when the
number of classes = 2. Both approaches are optimal in size (of the
dual functional) of2] wherel is the total number of training examples.
Experiments performed on visual classification and “collaborative filter-
ing” show that both approaches outperform existing ordinal regression
algorithms applied for ranking and multi-class SVM applied to general
multi-class classification.

1 Introduction

In this paper we investigate the problem of inductive learning from the point of view of
predicting variables of ordinal scale [3, 7, 5], a setting referred taaldng learning or
ordinal regression. We consider the problem of applying the large margin principle used
in Support Vector methods [11, 2] to the ordinal regression problem while maintaining an
(optimal) problem size linear in the number of training examples.

Ordinal regression may be viewed as a problem bridging between the two standard machine
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learning tasks of classification and (metric) regressionxl;et R™,i = 1,...I, be the in-

put vectors (the information upon which prediction takes place) drawn from some unknown
probability distributionD(x); lety; € Y be the output of the prediction process according
to a unknown conditional distribution functidi(y|x). Thetraining set, on which the se-
lection of the best predictor would be made, consistx@fy;) independent and identically
distributed observations drawn from the joint distributio(x, y) = D(x)D(y|x).

The learning task is to select a prediction functfgn) from a family of possible functions
F that minimizes the expectedss over the training set weighted by the joint distribution
D(x,y) (also known agisk functional). The loss functiore : Y x Y — R represents
the discrepancy betweef(x) andy. Since the joint distribution is unknown, the risk
functional is replaced by the so-callethpirical risk functional[11] which is simply the
average of the loss function over the training &) >, c(f (x:), ¥i)-

In a standardlassification problem the input vectors are associated with onk dfsses,
thusy; € Y = {1, ..., k} belongs to aminordered set of labels denoting the class member-
ship. SinceY is unordered and since the metric distance between the preditfion

and the correct outpuj is of no particular value, the loss function relevant for clas-
sification is the non-metric 0-1 indicator functiefif(x),y) = 0 if f(x) = y and
c(f(x),y) = 1if f(x) # y. In a standardegression problemy ranges over the reals
therefore the loss function can take into account the full metric structure — for example,

c(f(x),y) = (f(x) —y)*.

In ordinal regressior}, is a finite set (like in classification) but there is @nglering among

the elements ot (like in regression, but unlike classification). On the other hand, the
ordering of the labels does not justify a metric loss function, thus casting the ranking learn-
ing problem as an ordinary regression (by treating the continuous variable with a coarse
scale) may not be realistic [1]. Settings in which it is natural to rank or rate instances
arise in many fields such as information retrieval, visual recognition, collaborative filter-
ing, econometric models and classical statistics. We will later use some applications from
collaborative filtering and visual recognition as our running examples in this paper. In col-
laborative filtering for example, the goal is to predict a person’s rating on new items such
as movies given the person’s past ratings on similar items and the ratings of other people
of all the items (including the new item). The ratings are ordered, such as “highly recom-
mended”, “good”,..., “very bad” thus collaborative filtering falls naturally under the domain
of ordinal regression.

In this paper we approach the ordinal regression problem within a classification problem
framework, and in order to take advantage of the non-metric nature of the loss function we
wish to embed the problem within a large margin principle used in Support Vector methods
[11]. The Support Vector method (SVM) was introduced originally in the context of 2-class
classification. The SVM paradigm has a nice geometric interpretation of discriminating one
class from the other by a separating plane with maximum margin. The large-margin princi-
ple gives rise to the representation of the decision boundary by a small subset of the training
examples called Support Vectors. The SVM approach is advantageous for representing the
ordinal regression problem for two reasons. First, the computational machinery for find-
ing the optimal classifief (x) is based on the non-metric 0-1 loss function. Therefore,
by adopting the large-margin principle for ordinal regression we would be implementing
an appropriate non-metric loss function as well. Second, the SVM approach is not limited
to linear classifiers where through the mechanism of Kernel inner-products one can draw
upon a rich family of learning functions applicable to non-linear decision boundaries.

To tackle the problem of using an SVM framework for regression learning, one may take
the approach proposed in [7], which is to reduce the total order into a set of preferences over
pairs which in effect increases the training set by ficim/ 2. Another approach, inherited

from the one-versus-many classifiers used for extending binary SVM to multi-class SVM,



is to solvek — 1 binary classification problems. The disadvantage of this approach is that
it ignores the total ordering of the class labels (and also the effective size of the training
set iskl whereas we will show that regression learning can be performed with an effective
training set of siz&l). Likewise, the multi-class SVMs proposed in [4, 11, 12, 8] would
also ignore the ordering of the class labels and use a training set @fisize

In this paper we adopt the notion of maintaining a totally ordered set via projections in
the sense of projecting the instancesonto the realsf(x) = w - x [7, 5] and show
how this could be implemented within a large margin principle with an effective training
size of2l. In fact, we show there is more than one way to implement the large margin
principle as theré — 1 possible margins. Essentially, we show, there are two strategies in
general: a “fixed margin” strategy where the large margin principle is applied thasest
neighboring pairs of classes, or a multi-margin strategy where the sum bfthanargins

is maximized.

2 TheOrdinal Regression Problem

Let x! be the set of training examples where= 1, ..., k denotes the class number, and

¢ = 1,...,1; is the index within each class. Let= Z]. i; be the total number of training
examples. A straight-forward generalization of the 2-class separating hyperplane problem,
where a single hyperplane determines the classification rule, is to definkseparating
hyperplanes which would separate the training datakrdadered classes by modeling the
ranks as intervals on the real line — an idea whose origins are with the classical cumulative
model [9], see also [7, 5]. The geometric interpretation of this approach is to lodkfar
parallel hyperplanes represented by vestoe R™ (the dimension of the input vectors)

and scalar$; < ... < bg_ defining the hyperplangsv, b;), ..., (w, b;—1), such that the

data areseparated by dividing the space into equally ranked regions by the decision rule

f(x) :re{r?ink}{r:w-x—br < 0}. Q)

yeeny

In other words, all input vectors satisfyingb,_; < w - x < b, are assigned the rank

r (using the convention thdt, = o). For instance, recently [5] proposed an “on-line”
algorithm (with similar principles to the classic “perceptron” used for 2-class separation)
for finding the set of parallel hyperplanes which would comply with the separation rule
above.

To continue the analogy to 2-class learning, in addition to the separability constraints on
the variablesy = {w,b; < ... < by_1} one would like to control the tradeoff between
lowering the “empirical risk'R..,,,,(v) (error measure on the training set) and lowering the
“confidence interval'®(a, h) controlled by the VC-dimensioh of the set of loss func-
tions. The “structural risk minimization” (SRM) principle [11] controls the “actual” risk
R(a) (error measured on the “test” data) by keepldg,,,, (o) fixed (in the ideal separable
case it would be zero) while minimizing the confidence interval. The geometric interpreta-
tion for 2-class learning is tmaximize the margin between the boundaries of the two sets

[11, 2].

In our setting of ranking learning, there dre- 1 margins to consider, thus there are two
possible approaches to take on the “large margin” principle for ranking learning:

¢ “fixed margin” strategy: the margin to be maximized is the one defined by the
closest (neighboring) pair of classes. Formally, ket b, be the hyperplane sep-
arating the two pairs of classes which are the closest among all the neighboring
pairs of classes. Lat, b, be scaled such the distance of the boundary points from
the hyperplane is 1, i.e., the margin between the clagses 1 is 2/|w| (see
Fig. 1). Thus, the fixed margin policy for ranking learning is to find the direction
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Figure 1:Fixed-margin policy for ranking learning. The margin to be maximized is associated with
the two closest neighboring classes. As in conventional SVM, the margin is pre-scaled to be equal to
2/|w| thus maximizing the margin is achieved by minimiziwg w. The support vectors lie on the
boundaries between the two closest classes.

w and the scalarg,, ..., b, 1 such thatw - w is minimized (i.e., the margin be-
tween classeg ¢+ 1 is maximized) subject to the separability constraints (modulo
margin errors in the non-separable case).

e “sum of margins” strategy: the sum of dll— 1 margins are to be maximized.
In this case, the margins are not necessarily equal (see Fig. 2). Formally, the
ranking rule employs a vector, |[w| = 1, and a set oR(k — 1) thresholds
a; < by <ap <by < ... <apy <bygsuchthaw x! < ajandw-x]' > b;
forj = 1,...,k — 1. In other words, all the examples of clabs< j < k are
“sandwiched” between two parallel hyperplar(®s,a;) and (w,b;_1), where

by = —oo anday = oo. Thek — 1 margins are therefor@; — ;) and the large
margin principle is to maximizg_ ; (b; —a;) subject to the separability constraints
above.

It is also fairly straightforward to apply the SRM principle and derive the bounds on the
actual risk functional by following [11] and making substitutions where necessary. Let the
empirical risk be defined as:

AN
Rempl) = 7 2 DG =yl = T,

i=1 j=1

wheref(x}) is the decision rule (1),; is the number of training examples of clgsand!

is the total number of training examples. The empirical risk is the average of the number
of “mistakes” where the magnitude of a mistake is related to the total ordering, i.e., the
loss function@(z, o) = |f(x) — y|, wherez = (x,y), is an integer between 0 aid— 1
(unlike the 0/1 loss function associated with classification learning). Since the loss function
is totally bounded, the VC-dimension of the class of loss functiodsQ(z,«) < k—11is

equal to the VC-dimensioh of the class of indicator (0/1) functions

0, a)—B<0
I(Z"M):{ N A AN }

wheres € (0,k — 1). Let A-margin k-separating hyperplanes be defined wken= 1



and

1, w-x < ap

r, bj_1§w~xga]~
y:

k7 bk_1§W'X

and whereb; — a; = A (fixed margin policy), and\ is the margin between the closest
pair of classes. From the arguments above, the VC-dimension of the getadrgin k-
separating hyperplanes is bounded by the inequality (following [11]):

2
hgmin{[%} 7n}—l—l7

whereR is the radius of the sphere containing all the examples. Thus we arrive to the bound
on the probability that a test example will not be separated correctly (following [[11], pp.
77,133)):

With probability 1 — u one can assert that the probability that a test example will not be
separated correctly by the A-margin k-separating hyperplanes has the bound

m  e(k—1) dm
Perror < — 1 1 11 _ 1 |
=773 ( + +le(k—1)>

where .
. 4h(lnﬁ +1)— 1n,u/4'

Therefore, the larger the “fixed” margin is the better bounds we obtain on the generalization

performance of the ranking learning problem with the fixed-margin policy. Likewise, we

obtain the same bound under the sum-of-margins principle, whesalefined by the sum

of thek — 1 margins.

In the remainder of this paper we will introduce the algorithmic implications of these two
strategies for implementing the large margin principle for ranking learning. The fixed-
margin principle will turn out to be a direct generalization of the Support Vector Machine
(SVM) algorithm — in the sense that substitutihg= 2 in our proposed algorithm would
produce the dual functional underlying conventional SVM. It is interesting to note that the
sum-of-margins principle reduces#&V M (introduced by [10]) whek = 2.

3 Fixed Margin Strategy

Recall that in the fixed margin polidyw, b,) is a “canonical” hyperplane normalized such
that the margin between the closest clasges+ 1 is 2/|w|. The indexgq is of course
unknown. The unknown variables,b; < ... < bx_; (and the index) could be solved

in a two-stage optimization problem: a Quadratic Linear Programming (QLP) formulation
followed by a Linear Programming (LP) formulation.

The (primal) QLP formulation of the (“soft margin”) fixed-margin policy for ranking learn-
ing takes the form:

w,bjf?ffi,relfj“ %w -w+C ZZ: ZJ: (ez + erj+1) (2)
subject to
W'Xg—bjé—l-f-eg, 3)
woxith by >1— et 4)

e >0,e7 >0 (5)
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Figure 2: Sum-of-margins policy for ranking learning. The objective is to maximize the sum of

k — 1 margins. Each class is sandwiched between two hyperplanes, the naris gt to unity as a
constraint in the optimization problem and as a result the objective is to max@}(éj —aj). In

this case, the support vectors lie on the boundaries among all neighboring classes (unlike the fixed-
margin policy). When the number of clasdes- 2, the dual functional is equivalent t&5V M.

wherej =1,...,k —landi =1, ...,i;, andC is some predefined constant. The sca&érs
ande’*! are positive for data points which are inside the margins or placed on the wrong

i

side of the respective hyperplane — if the training data is linearly separable on &ll the
(ordered) classes then we wouldn’t need those (“slack”) variables.

The primal functional implements the fixed-margin principle even though we do not know

in advance the index. In the case of “hard” margin (the primal functional above when
el,e;’ are set to zero) the margin is maximized while maintaining separability, thus the
margin will be governed by the closest pair of classes because otherwise the separability
conditions would cease to hold. The situation may be slightly different and would depend
on the choice o’ in the soft margin implementation — but qualitatively the same type of

behavior holds.

The solution to this optimization problem is given by the saddle point of the Lagrange
functional (Lagrangian):

L() = %W'W+CZ(eg+efj+1)

i,J

+ Z)\f(wxz —bj+1—¢)
i,j

+ Y S —eTT b —wexIT
i,j

= S ded =Sttt
i € G €
4,J

i,j

wherej = 1,...k — 1,i = 1,...,i;, and¢/, 71" A, 67 are allnon-negative Lagrange

)
multipliers. Since the primal problem is conzvex, there exists a strong duality between the
primal and dual optimization functions. By first minimizing the Lagrangian with respect
tow,bj, €, e;”“ we obtain the dual optimization function which then must be maximized

with respect to the Lagrange multipliers. From the minimization of the Lagrangian with



respect tow we obtain:
w:—ZA{x{%—Z&{xgH (6)
i,j i,j

That is, the directiorw of the parallel hyperplanes is described by a linear combination
of the support vectors associated with the non-vanishing Lagrange multipliers. From the
Kuhn-Tucker theorem the support vectors are those vectors for which equality is achieved
in the inequalities (3,4). These vectors lie on the two boundaries between the adjacent
classesy, ¢ + 1 (and other adjacent classes which have the same margin). From the mini-
mization of the Lagrangian with respectitpwe obtain the constraint:

NoX=>"6 j=1,..k-1 )

and the minimization with respect t§ ande;’*" yields the constraints:
C-N-¢=0 ®)
C—6l -t =0 ©)

which in turn gives rise to the constrairits< A} < C where)! = C'if the corresponding
data point is a margin erro¢{ = 0, thus from the Kuhn-Tucker theoree > 0), and

likewise0 < 67 < C where equality)/ = C holds when the data point is a margin error.
Note that a data point can coumiice as a margin error — once with respect to the class
on its “left” and once with respect to the class on its “right”.

For the sake of presenting the dual functional in a compact form, we will introduce some
new notations. Lef{’ be then x i; matrix whose columns are the data poirts i =
17 ceny ij:

J— |xJ J
X7 = [xl,...,xij] .
nXxi;

Let A = (\{,...,\],)T be the vector whose components are the Lagrange multipiers
corresponding to class Likewise, letd/ = (5], ...,67.)T be the Lagrange multipliers/
corresponding to clags+ 1. Let = (A',..., A" §',..., 6" 1)T be the vector holding
all the A andé! Lagrange multipliers, and let! = (u},...,pui_)" = (AL, AT
andp? = (u3,...,pu2_ )" = (8,...,85=1)T the first and second halves pf Note that
,u} = M is a vector, and likewise so ;sf = 07, Let1 be the vector of 1's, and finally, let

() be the matrix holding two copies of the training data:

Q=[-X' .., —XF1 X% . XF] (10)

nxN’
whereN = 2] — i; — i}. For example, (6) becomes in the new notatiens= Qu. By
substituting the expression fer = QQu back into the Lagrangian and taking into account
the constraints (7,8,9) one obtains the dual functional which should be maximized with
respect to the Lagrange multipliess:

N
max Y pi—p(QTQ)n (11)
i=1
subject to
0<pu<C i=1,..,N (12)

Lopj=1-p4 j=1,..k-1 (13)



There are several points worth noting at this stage. First, vithen2, i.e., we have only

two classes thus the ranking learning problem is equivalent to the 2-class classification
problem, the dual functional reduces and becomes equivalent to the dual form of the con-
ventional SVM. In that cas@) " Q);; = y;y;xi - x; wherey;,y; = +1 denoting the class
membership.

Second, the dual problem is a function of the Lagrange multiphérandd; alone, that

is, all the remaining Lagrange multipliers have dropped out. Therefore the size of the
dual QLP problem (the number of unknown variables) is proportional to twice the number
of training examples — preciselly = 2I — i, — i wherel is the number of training
examples. This favorably compares to thél ?) required by the recent SVM approach to
ordinal regression introduced in [7] or thé required by the general multi-class approach

to SVM [4]. In fact, the problem size oV = 21 — i, — i, is the smallest possible for the
ordinal regression problem since each training example is flanked by a class on each side
(except examples of the first and last class), therefore the minimal number of constraints
for describing an ordinal regression problem using separating hyperplaNes is

Third, the criteria function involves only inner-products of the training examples, thereby
making it possible to work with kernel-based inner-products. In other words, the entries
QT Q are the inner-products of the training examples which can be represented by the ker-
nel inner-product in the input space dimension rather than by inner-products in the feature
space dimension. The decision rule, in this case, given a new instance xeetald be

the rankr corresponding to the first smallest threshipldor which

S ek - Y MNEGE.x) <,

support vectors support vectors

whereK (x,y) = ¢(x) - ¢(y) replaces the inner-products in the higher-dimensional “fea-
ture” spacep(x).

Finally, from the dual form one can solve for the Lagrange multiplierand in turn obtain

w = @Qu the direction of the parallel hyperplanes. The scala(separating the adjacent
classesy, ¢ + 1 which are the closest apart) can be obtained from the support vectors, but
the remaining scalars; cannot. Therefore an additional stage is required which amounts
to a Linear Programming problem on the original primal functional (2) but this time
already known (thus making this a linear problem instead of a quadratic one).

4 Sum-of-Margins Strategy

In the fixed margin policy for ranking learning the directianof the £ — 1 parallel hy-
perplanes was determined such as to maximize the margin afdsest adjacent pair of
classes. In other words, viewed as an extension to conventional SVM, the criteria function
remained essentially a 2-class representation (maximizing the margin between two classes)
while the linear constraints represented the admissibility constraints necessary for making
sure that all classes are properly separable (modulo margin errors).

In this section we propose an alternative large-margin policy which allows foi mar-

gins where the criteria function maximizes then of the k — 1 margins. The challenge

in formulating the appropriate optimization functional is that one cannot adopt the “pre-
scaling” ofw approach which is at the center of conventional SVM formulation and of the
fixed-margin policy for ranking learning described in the previous section.

The approach we take is to represent the primal functional u¥ihg- 1) parallel hy-
perplanes instead @& — 1. Each class would be “sandwiched” between two hyperplanes
(except the first and last classes). This may appear superfluous, but in fact all the extra
variables (havin@(k — 1) thresholds instead df — 1) drop out in the dual functional —



therefore this approach has no detrimental effect in terms of computational efficiency. For-

mally, we seek a ranking rule which employs a vestoand a set o2(k — 1) thresholds
a; <b <as <by < .. <ap_1 <bp_y such thatw - XZ < a; andw - XZ—H > bj for

j =1,..,k—1. In other words, all the examples of clasx< j < k are “sandwiched”
between two parallel hyperplangs, a ;) and(w, b;_1), whereby = —oco anday, = .

The margin between two hyperplanes separating glasslj + 1 is:
b]’ — aj
\/(w W)

Thus, by setting the magnitude efto be of unit length (as a constraint in the optimization
problem), the margin which we would like to maximizeEj(bj —aj)forj=1,.. k-1
which we can formulate in the followingrimal Quadratic Linear Programming (QLP)
problem (see also Fig. 2):

k—1

wr’ral}%j jz:;(aj —bj)+ Czi: ZJ: (6{ + e;‘jH) (14)
subject to
a; < bj, (15)
bi <aj1, j=1,..k—2 (16)
w~x{§aj+e{, a7
by — et < woxd T (18)
w-w<l1, (29)
e >0, >0 (20)

wherej =1, ...,k — 1 (unless otherwise specified) ane- 1, ..., i;, andC is some prede-

fined constant (whose physical role would be explained later). There are several points to
note about the primal problem. First, the constraints< b; andb; < a4, are necessary

and sufficient to enforce the ordering constraint< b; < as < by < ... < agp—1 < bj_1.
Second, the (non-convex) constraimt- w = 1 is replaced by the convex constraint

w - w < 1 since the optimal solutiosv* would have unit magnitude in order to opti-
mize the objective function. To see why this is so, consider first the calse-of where

we have a single (hard) margin:

min (a —b)
w,a,b
subject to
a<b

w-x;<a t=1,..,11

b<w-x; i=1i1+1,..,.N

w-w<l1
We would like to show that for the optimal solution (given that the data is linearly separable)
w must be of unit norm. Letv, a, b be the optimal solution anav| = 3 < 1. Letx ™ and

x~ be points (support vectors) on the left and right boundary planeswi.ex,~ = @ and
w-xT =b. Letw* = (1/3)w (thus|w*| = 1). We have therefore,

. 1
w'ex = —a
B
1
w*.xt = Zp

B



Therefore, the new solutiow*, (1/3)a, (1/3)b has a lower energy value (larger margin)
of (1/8)(a — b) whenj < 1. As aresultg = 1 since the original solution was assumed
to be optimal. This line of reasoning readily extends to multiple margins as the fggtor
would apply to all the margins uniformly thus the s@j(aj —b;) would decrease (larger
sum of margins) by a factor df/ 3 — thus3 = 1. The introduction of the “soft” margin
component (the second term in 14) does not affect this line of reasarilang as the
constant is consistent with the existence of a solution witlgative energy — otherwise
there would be auality gap between the primal and dual functionals. This consistency is
related to the number of margin errors which we will discuss in more details later in this
section and the following section. We will proceed to derive the dual functional below.

The Lagrangian takes the following form:

L() = Z i —b; +CZ(6 +6*J+1) +21/1J +Z77J —jt1)
+ Z)\J (w-x) —a; —€) 2(53 — et W~X§+1)
+ a(w w—1)-> (e ZC*J“ *

where j = B e 1’J (unless otherwise specified)y = 1,..,%;, and

Wi,misa, ¢, /\{7 5f are allnon-negative Lagrange multipliers. From the minimization
of the Lagrangian with respect te we obtain:

1
W = %Qpﬁ

where the matrix) was defined in ( 10) and the vectprholds the Lagrange multipliers
AJ andé? as defined in the previous section. From the minimization with respéct fior
j=1,..,k —2we obtain:

oL ;

Forj = k — 1 we obtain,

oL
=—1—p_ sk-1 =0
T Yr—1 +zi: i

from which it follows that,

> oot > (21)
Likewise, the minimization with respect tq provides the constraint,

DN =1+,
from which it follows (sincep; > 0) that
PIRHERE (22)

and with respectta;, j = 2, ...,k — 1, we get the expression,

oL

P, =1+ —nj- 1—ZAJ_0



Summing up the Lagrange multiplier gives rise to another constraint (beyond (21) and
(22)), as follows:

k—1 k—1 k—2
PED B BEIEIED SRS 2
i =2 i j=1 J=1
and
k—2 ' k—1 k—2
DD AT =k =1+ Y v+ D
j=1 1 i j=1 j=1
Therefore, as a result we obtain the constraint:

SN =>al (23)
4,J 4,J

Finally, the minimization with respect o/ ande;’ "' yields the expressions (8) and (9)
from which we obtain the constraints

0< M <, (24)
0<4]<C, (25)

Where)\{ =C and/or&{ = C if the corresponding data poitxti.' is a margin error (as
mentioned before, a data point can cotwite as a margin error — once with respect to
the class in its “left” and once with respect to the class on its “right”).

After substituting the expression fer back into the Lagrangian and considering the con-
straints borne out of the partial derivatives with respect tob; we obtain the dual func-

tional as a function ofy, Mo only (all the remaining variables drop out):

R

1
max {L’(a,u) =-a- IMT(QTQ)M} :
a, L Q
subject to the constraints (21,22,24,25) angt 0. Note thato = 0 cannot occur if there
is an optimal solution with negative energy in the primal functional (otherwise we have a
duality-gap, see later) since we have shown above thdtthe- 1 in the optimal solution
thus form the Kuhn-Tucker theorem=# 0. We can eliminatex as follows:

oL’ 1
=-1+-—C=0.

oa + 4a?
Substituting the expression far= (1/2)+/C back toL'() provides a new dual functional
L' () = —/ 1" QT Qu and maximization of.” (i) is equivalent to maximization of the
expression-u " (Q T Qu sinceQ ' Q is positive definite. To conclude, the dual functional
takes the following form:

max —1 (QTQ)n (26)
subject to
0<w;<C i=1,..., N (27)
1o >1 (28)
1oy > 1 (29)
1op' =147 (30)

where@ andy are defined in the previous section. The directoiis represented by the
linear combination of the support vectors:

w o @H
|Qul|’



where, following the Kuhn-Tucker theorem; > 0 for all vectors on the boundaries be-
tween the adjacent pairs of classes and margin errors. In other words, the weatsci-

ated with non-vanishing; are those which lie on the hyperplanes, i.e., satisfy=- w - x;

orb; =w- xJJr1 or vectors tagged as margin err0f$ &0 ore*JJr1 > 0). Therefore, aII
the thresholdsJ, b; can be recovered from the support vectors — unlike the fixed-margin
scheme which required another LP pass.

The dual functional (26) is similar to the dual functional (11) but with some crucial dif-
ferences: (i) the quadratic criteria functional is homogeneous, and (ii) constraints (28,29)
leads to the constrait, 1; > 2. From the Kuhn-Tucker theorem,; = 0 whena; < b;,
andn; = 0 whenb; < a;; thus when the data is linearly separable the optimal solution
we would have) ", n; = 2(k — 1). Since a margin error implies that the corresponding La-
grange multiplieg.; = C, the number of margin errors is bounded sifceg 1; is bounded.
These two differences are also what distinguishes between conventional SVM &id

for 2-class learning proposed recently by [10]. Indeed, if wekset 2 in the dual func-
tional (26) we would be able to conclude that the two dual functionals are identical. The
primal and dual functionals ofSV M and the sum-of-margins policy for ranking learning
for k = 2 classes are summarized below:

vSVM : primal vSVM : Dual
Milw p 5 %w ‘W — pv + % Zfil € max, —%MTM,u
subject to subject to
yi(w-x; +0) 26— € 0 <<+

€ >0 > iYiti =0
p=0 Dok >V

k = 2 sum — of — margins : primal k = 2 sum — of — margins : dual
Wit et (@ = 0) + C (i 6+ D,y €f)  maxy, —u Map
subject to subject to
w-x;<a—¢ 1=1,..,0 0<u; <C
b—ef<w-x; t=01+1,.,N > yini =0
w-w<l1 Do > 2

a<b, e>0,¢ >0

whereM = QT Q andM;; = y;y;x; - x; wherey; = £1 depending on the class member-
ship. Although the primal functionals appear different, the dual functionals are similar and
in fact can be made equivalent by the following change of variables. Scale the Lagrange
multipliersy; associated witlySV M such thaj; — 2‘“ . ThenC = ljv and equivalence
between the two dual forms is established. Appendlx A provides a more detailed analysis
of the role ofC in the case of = 2.

In the general case d&f > 2 classes (in the context of ranking learning) the role of the
constaniC carries the same meaning: < 2(" 1) where#m.e. stand for “total number
of margin errors”, thus
2(k—1
=D o cop- 1),

Recall that in the worst case a data point can count twice for a margin error — being both
a margin error in the context of its class and the class on its “left” and in the context of its
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fixed-margin algorithm sum-of-margins algorithm

Figure 3: Synthetic data experiments fér = 3 classes with 2D data points using second order
kernel inner-products. The solid lines correspond;tai» and the dashed lines te, b2 (from left to

right). Support vectors are marked as squares in the display. The left column illustrates fixed-margin
(dual functional (35)) and the right column illustrates sum-of-margins (dual functional (26)). When
the value ofC' is small (top row) the number of margin errors (and support vectors) is large in order
to enable large margins, i.8; — a; are large. In the case of sum-of-margins (top right display) a
small value ofC makesb; = a2 in order to maximize the margins. When the valueCbis large
(bottom row) the number of margin errors (and support vectors) is small and as a result the margins
are tight.

class and the class on its “right”. Therefore the total number of margin errors in the worst
case isV = 2] — iy — ij,, wherel is the total number of data points.

The last point of interest to make is that, unlike the fixed margin policy, all the thresh-
oldsa;,b; are determined from the support vectors — the second Linear Programming
optimization stage is not necessary in this case. In other words, there must be support vec-
tors on each hyperplariev, a;) and(w, b;), otherwise a better solution exists with larger
margins.

To conclude, the multiple margin policy maximizes the sum ofithe1 margins allowing

the margins to differ in size — thus effectively rewarding larger margins between neigh-
boring classes which are spaced far apart from each other. This is opposite to the fixed
margin policy in which the direction of the hyperplanes is dominated by the closest neigh-
boring classes. We saw that the fixed margin policy reduces to conventional SVM when
the number of classes = 2 and the multiple margin policy reduces #$'V M. Other
differences between the two policies of using the large margin principle is that the multi-
ple margin policy requires a single optimization sweep for recovering both the direetion
and the thresholds;, b; whereas the fixed margin policy requires two sweeps: a QLP for
recoveringw and a Linear Programming problem for recoveringthe 1 threshold$ ;.



5 Fixed Margin Policy Revisited: Generalization of vSV M

We have seen that the sum-of-margins policy reducesStt' M when the number of
classest = 2. However, one cannot make the assertion in the other direction that the
dual functional (26) is a generalization@6V M . In fact, the fixed margin policy applied

to SV M for ranking learning would have the following form:

1 1 ; ;
. z : z : J *J+1
Hljlnfj-i—l §W Wt i — (Gi T ) (31)
? J

w,bj,€; ,€;
subject to
J ) J
w-x; —b; < —p+ej,
*j+1

w~x{+1—bj2p—ez ,
p>0,e >0, >0,

and the resulting dual functional would have the form:

1
max —5n (QTQ)m (32)
subject to
oguig% i=1,..N (33)
Zm >v
1py =143, (34)

which is not equivalent to the dual functional (26) of the multiple-margin policy (nor to the
dual functional (11) of the fixed-margin policy).

EachMovie data set: http://www.research.compaq.com/SRC/eachmovie/

1628 movies Total of 2,811,983 ratings

72916 X X Xig8 X

users

N Training set
Rating of user j of movie i I LY vlfzg
matrix is sparse (5% full) {(X' y') =1
y, 0(0....8)

Target user .-.

Predict the rating of a target user to a new movie

Figure 4: EachMovie dataset used for predicting a person’s rating on a new movie given the past
ratings on similar movies and the ratings of other people on all the movies. See text for details.

We saw thatvSV M could be rederived using the principle of two parallel hyperplanes
(primal functional (14) in the caske = 2). We will show next that the generalization of



vSV M to ranking learning (dual functional (32) above) can be derived using(the 1)
parallel hyperplanes approach. The primal functional takes the following form:

min t—f-CZZ(ef%—eer)
i g

w,a;,b;

subject to
a; — b]’ = t7
w-x] <aj+el,

b]’ — E*fjJrl g+t
i

S W X5 )

w-w<l1,

e >0, >0.
Note that the objective functiomin ¢ subject to the constraint; — b; = t captures the
fixed margin policy. The resulting dual functional takes the following form:

max —1 (QTQ)n (35)
subject to
0<u; <C i=1,...,N (36)

which is equivalent (via change of variables) to the dual functional (32).

Thus to conclude, there are two fixed-margin implementations for ranking learning, one
is a direct generalization of conventional SVM (dual functional (11)), and the second is a
direct generalization of SV M (dual functional (35)).

6 Experiments

We have conducted experiments on synthetic data in order to visualize the behavior of
the new ranking algorithms, experiments on “collaborative filtering” problems, and exper-
iments on ranking visual data of vehicles.

Fig. 3 shows the performance of the two types of algorithms on synthetic 2D data of a
three classK = 3) ordinal regression problem using second order kernel inner-products
(thus the separating surfaces are conics). The value of the cofstargnges the sensi-
tivity to the number of margin errors and the number of support vectors and as a result the
margins themselves (more margin errors allow larger margins). The left column illustrates
fixed-margin (dual functional (35)) and the right column illustrates sum-of-margins (dual
functional (26)). When the value @f is small (top row) the number of margin errors (and
support vectors) is large in order to enable large margins,bi;e— a; are large. In the

case of sum-of-margins (top right display) a small valu€'aihakesb; = a- in order to
maximize the margins — as a result the center class completely vanishes (the decision rule
will never make a classification in favor of the center class). When the valGeiofarge
(bottom row) the number of margin errors (and support vectors) is small and as a result the
margins are tight.

Fig. 4 shows the data structure of “EachMovie” dataset [6] which is used for collaborative
filtering tasks. In general, the goal in collaborative filtering is to predict a person’s rating on
new items such as movies given the person’s past ratings on similar items and the ratings
of other people of all the items (including the new item). The ratings are ordered, such
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Figure 5:The results of the fixed-margin principle plotted against the results obtained by using the
on-line algorithm of [5] which does not use a large-margin principle. The average error between the
predicted rating and the correct rating is much lower.

as “highly recommended”, “good”,..., “very bad” thus collaborative filtering fall naturally
under the domain of ordinal regression (rather than general multi-class learning).

The EachMovie dataset contains 1628 movies rated by 72,916 people arranged as a 2D
array whose columns represent the movies and the rows represent the users — about 5% of
the entries of this array are filled-in with ratings between., 6 totaling 2,811,983 ratings.

Given a new user, the ratings of the user on the 1628 movies (not all movies would be rated)
form they; and the i'th column of the array forms the which together form the training

data (for that particular user). Given a new movie represented by the wectoratings

of all the other 72,916 users (not all the users rated the new movie), the learning task is to
predict the ratingf(x) of the new user. Since the array contains empty entries, the ratings
were shifted by-3.5 to have the possible ratinds-2.5, —1.5, —0.5,0.5,1.5,2.5} which

allows to assign the value of zero to the empty entries of the array (movies which were not
rated).

For the training phase we chose users which ranked about 450 movies and selected a subset
{50,100, ..., 300} of those movies for training and tested the prediction on the remaining
movies. We compared our results (collected over 100 runs) — the average distance be-
tween the correct rating and the predicted rating — to the best “on-line” algorithm of [5]
called “PRank” (there is no use of large margin principle). In their work, PRank was com-
pared to other known on-line approaches and was found to be superior, thus we limited our
comparison to PRank alone. Attempts to compare our algorithms to other known ranking
algorithms which use a large-margin principle ([7], for example) were not successful since
those square the training set size which made the experiment with the Eachmovie dataset
untractable computationally.

The graph in Fig. 5 shows that the large margin principle (dual functional 35) makes a
significant difference on the results compared to PRank. The results we obtained with
PRank are consistent with the reported results of [5] (best average error of about 1.25),
whereas our fixed-margin algorithm provided an average error of about 0.7).



Figure 6:Classification of vehicle type: Small, Medium and Large. On the left are typical examples
of correct classifications and on the right are typical examples of incorrect classifications.

We also applied the ranking learning algorithms to a visual classification problem where
we consider images of vehicles taken from the rear where the task is to classify each picture
to one of three classes: “small” (passenger cars), “medium” (SUVs, minivans) and “large”
(buses, trucks). There is a natural order Small, Medium, Large since making a mistake
between Small and Large is worse than confusing Small and Medium, for example. The
ordering Small, Medium, Large makes it natural for applying ranking learning (rather than
general multi-class). The problem of classifying vehicle types is relevant for applications in
the area of “Intelligent Traffic Transportation” (ITS) where on-board sensors such as Visual
and Radar would be responsible for a wide variety of “driving assistance” applications
including active safety related to airbag deployment in which vehicle classification data is
one important piece of information.

The training data included 1500 examples from each class where the input vector was
simply the raw pixel values down-sampled to 20x20 pixels per image. The testing

phase included 8081 pictures of Small vehicles, 3453 pictures of Medium vehicles and
2395 pictures of Large vehicles. The classification error (counting the number of miss-

classifications) with the fixed-margin policy using second-order kernel inner-products was
20% of all test data compared to 25% when performing the classification using three rounds
of 2-class conventional SVM (which is the conventional approach for using large margin

principle for general multi-class). We also examined the ranking error by averaging the

difference between the true rafk, 2, 3} and the predicted rank

f(x) = > K (xIT %) — > MK (x!,x),

support vectors support vectors

over all test vector. The average was 0.216 compared to 1.408 using PRank. Fig. 6
shows a typical collection of correctly classified and incorrectly classified pictures from
the test set.



7 Summary

We have introduced a number of algorithms — of linear size with the number of training
examples — for implementing a large margin principle for the task of ordinal regression.
The first type of algorithms (dual functionals 11, 32, 35) introduces the constraint of a
single margin determined by thelosest adjacent pair of classes. That particular margin

is maximized while preserving (modulo margin errors) the separability constraints. The
support vectors lie on the boundaries of the closest adjacent pair of classes only, thus a
complete solution requires first a QLP for finding the hyperplanes direetiamd an LP

for finding the thresholds. This type of algorithm comes in two flavors: the first is a direct
extension of conventional SVM (dual functional 11) and the second is a direct extension of
vSV M (dual functionals 32, 35).

The second type of algorithm (dual functional 26) allows for multiple different margins
where the optimization criteria is the sum of the- 1 margins. The key observation
with this approach is that in order to accommodate different margins the pre-scaling con-
cept (canonical hyperplane) used in conventional SVM (and in fixed-margin algorithms
above) is not appropriate and instead one must Béve- 1) parallel hyperplanes where

the margins are represented explicitly by the interégls- a; (rather than byw - w as

with conventional SVM and fixed margin algorithms). A byproduct of the sum-of-margin
approach is that the LP phase is not necessary any more, and that the role of the ¢dnstant
has a natural interpretation. In fact whier= 2 the sum-of-margins algorithm is identical
tovSV M. The drawback of this approach (a drawback shared méth M) is that unfor-
tunate choices of the constaritmight lead to a “duality gap” with the QLP thus rendering
the dual functional irrelevant or degenerate.

Experiments performed on visual classification and “collaborative filtering” show that both
approaches outperform existing ordinal regression algorithms (on-line approach) applied
for ranking and multi-class SVM (applied to the visual classification problem).
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A A Closer Look at £ = 2: the Role of the Constant C

In vSV M the constan < v < 1 sets the tradeoff between the fraction of allowable
margin errors (at mostN data points could be margin errors) and the minimal number
of support vectors (at leastV support vectors). Therefore, the constéhin the sum-of-
margins ranking learning specializedite= 2 has a similar interpretatiorz/N < C < 2

is inversely proportional to the allowable number of margin errd¥s= 2/C. Thus, when

C = 2 only a single margin error is tolerated (otherwise the optimization problem will be
in a “weak duality” state — to be discussed later), and wiilea 2/N all the points could

be margin errors (and in turn all the points are support vectors).

The role of the constaidt as a tradeoff between the minimal number of support vectors and
the allowable number of margin errors can be directly observed through the primal problem,
as follows. Letw,a,b,¢;, € be a feasible solution for the primal problem. legtbe the
smallest of the non-vanishing, i.e., the distance of the nearest margin error associated
with the negative training examples; and ¢¢tbe the smallest of the non-vanishiap,

i.e., the distance of the nearest margin error associated with the positive training examples.
Consider translating the two hyperplanes such that @ + e andb = b — €. The new

feasible solution consists of;, b, w, €%, €; where,

27

o= ) e € >0
v 0 otherwise

andé; is defined similarly. The value of the criterion function becomes:
a-b+C (Zé#Zé;)
i i

=a—-b+C (Zel +Ze;‘> +e(l-al)+e(l—a*C),
whereq is the number of margin errors (wherg> 0) associated with the negative training
examples, and* the number of margin errors associated with the positive examples. In
order that the original solution would be optimal we must havethatC' +1—a*C > 0
(otherwise we could lower the criteria function and obtain a better solution). Therefore,

C< 2 .
T a+ta

We see that = 2 when only a single margin error is allowed a6d= 2/N when all
training data, positive and negative, are allowed to be margin errors. In other words the
smallerC < 2is, the more margin errors are allowed in the final solution.



To see the connection betwe€rand the necessary number of support vectors consider:
eo=minf{a—w-x;|la—w-x;,>0 i=1,...,i1},
which is the smallest distance between a negative example (which is not a support vector)
and the “left” hyperplane. Likewise,
eg=min{w-x;, —b|w-x;,—b>0 i=i1+1,..,N}

which is the smallest distance between a positive example (which is not a support vector)
and the “right” hyperplane. Starting with a feasible solutwrm, b, € ;, € we create a new

feasible solutiorw, a, b, ¢;, ¢ as follows. Leti = a — g, b = b + €,

. _ ) eiteo wi >0 t=1,..4
v 0 otherwise ’
and
o — € + € w >0 i=4+1,...,N
i 0 otherwise )

Note that the support vectors are associated with points on the hyperplanes and points
labeled as margin errorg{ > 0 covers both). Since in the new solution the hyperplanes
are shifted, all the old support vectors become margin errors §thus 0). The value of

the criteria function becomes:

a—b+C (Zé#?@f)

=a—-b0+C (Zei-%z:ef) +e(BC = 1)+ €5(B°C —1),

whereg is the number of negative support vectors @rfds the number of positive support
vectors. In order that the original solution would be optimal we must havesttiat 1 +

B*C — 1 > 0 (otherwise we could lower the criteria function and obtain a better solution).
Therefore,

2
B+ B> ok
We see that whe@' = 2 (a single margin error is allowed), the number of support vectors
is at least 1, and whefi = 2/N (all instances are allowed to become margin errors) then
the number of support vectorsé (i.e., all instances are support vectors). Taken together,

C forms a tradeoff: the more margin errors are allowed, the more support vectors one will
have in the optimal solution.

Finally, it is worth noting that with a wrong selection of the const@nhfwhen there are
more margin errors than the value@fallows for) would make the problem non-feasible

as the primal criteria function would be positive (otherwise the constraints would not be
satisfied). Since the dual criteria function is non-positive, a “duality gap” would emerge.
In other words, even in the presence of “slack variables” (soft margin), there could be an
unfortunate situation where the optimization problem is not feasible — and this situation is
related to the choice of the constarnt

To conclude, the 2-parallel hyperplanes formulation, or equivalently fié\ formula-

tion, carries with it a tradeoff. On one hand, the role of the congtastlear and intuitively
simple: there is a direct relationship between the valu€ ahd the fraction of data points
which are allowed to be marked as margin errors. On the other hand, unlike conventional
SVM which exhibits strong duality under all choices of the regularization conétatiie
2-plane formulation exhibits strong duality only for valuegCofvhich are consistent with

the worst case scenario of margin errors.



