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Abstract

In this paper, we generalize the conventional minimum squared
error (MSE) method to yield a new nonlinear learning machine by
using the kernel idea and adding different regularization terms.
We name it as kernel minimum squared error or KMSE algorithm,
which can deal with linear and nonlinear classification and re-
gression problems. With proper choices of the output coding
schemes and regularization terms, we prove that KMSE is identical
to the kernel Fisher discriminant (KFD) except for an unimportant
scale factor, and it is directly equivalent to the least square version
for support vector machine (LS-SVM). For continuous real out-
put values, we find that KMSE is the kernel ridge regression (KRR)
with a bias. Therefore KMSE can act as a general framework
that includes KFD, LS-SVM and KRR as its particular cases. In
addition, we simplify the formula to estimate the projecting direc-
tion of KFD. Experiments on artificial and real world data sets
in numerical computation aspects demonstrate that KMSE is a
class of powerful kernel learning machines.

I. INTRODUCTION

In the last few years, support vector machine (SVM) is
one of the most influential developments in the machine
learning [1-4][14]. One of its prominent advantages is the
idea of using kernels to realize the nonlinear transforms
without knowing the detailed transforms. According to this
idea, other authors proposed a class of kernel-based algo-
rithms, such as the kemel Fisher discriminant analysis or
KFD [5], the least square version for support vector ma-
chines or LS-SVM [6], and the kernel ridge regressions
without bias term or KRR [7].

In classical linear classifiers, minimum squared error al-
gorithm (MSE) and Fisher linear discriminant (FLD) are still
widely used in practice since they are simple and they can
tackle linearly separable and non-separable cases [§8-11]. It
had been proved that with the proper choice of the output
coding scheme, MSE is equivalent to FLD, and that MSE
approaches a minimum mean-squared-error approximation to
the Bayesian discriminant function as the number of samples
approaches infinity [8][9]. Therefore MSE can be viewed
as a more general classifier, which can fulfill other types of
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classifiers. Furthermore, for continuous real outputs, MSE
directly is the least squares linear regression algorithm.

In this paper, we generalize the conventional MSE method
to yield a new type of nonlinear learning machine, by using
the kernel idea and adding different regularization terms.
Since the different regularization term gives the solution
different properties, two regularization terms are used to
generate two different algorithms. We name the proposed
learning machines as kernel minimum squared error or
KMSE algorithm. With properly chosen output coding
schemes and regularization terms, we prove that KMSE is
identical to KFD except for an unimportant scale factor and
is directly equivalent to LS-SVM. For the continuous out-
put values, we prove that KMSE is KRR with a bias.
Therefore, KMSE can be viewed as a class of more general
kernel algorithms, which can implement KFD, LS-SVM and
KRR as its three special cases. Also, we simplify the for-
mula to estimate the projecting direction of KFD. In order
to evaluate the performance of KMSE and the equivalence
between different methods in computational aspects, we took
three experiments (the two spirals problem, an image classi-
fication and a cancer classification). The results demon-
strate that KMSE is a powerful kernel algorithm.

This paper is organized as in the following way: In section
II, KMSE classifier is defined by using kernel ideas and
defining different objective functions. The equivalence
between KMSE and KFD is proved in section III. In sec-
tion IV, the equivalence between KMSE and LS-SVM is
discussed. Section V analyses the relation between KMSE
and KRR. The experiment results of several artificial and
real world data sets are reported and analyzed in section VI.
Finally we present the conclusions and discussions.

II. THE KERNEL MSE ALGORITHM

In this section, we present the kernel MSE or KMSE algo-
rithm using the kernel idea and defining different objective
functions. For simplicity, we first consider the binary
classification problem.

Let x, ={x1,...,x§l} and X, ={x,2,...,x,22} be the
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training samples from two different classes @,,®,, and

denote x=x, Ux, ={x,,..x,}. Let y=[y,.. 3, ]
be the coding
XLXLX,ERY y, €R, i=L. ., j=L.,0,,
k=1.,1,

samples of classes @ ,@, respectively.

output scheme of samples, where

I=1+1, and I,l, are the number of

In the classical MSE approach, the objective function of
the training phase is defined as the summation of squared
errors between the output code and actual output for samples,
ie.,

Eo(Wy by )=
%(y - Aw,, —bM“)T(y -Aw, —b,u)
Q)]

where
1 1 2 2
A=[x1 - X Xp o x,Z] @)
W, € R" and b,, € R stand for the weight vector and

threshold respectively, and U is a column vector with [
ones. The conventional MSE classifier is the solution of a
set of linear equations derived from functional (1). Obvi-
ously, MSE solution depends on the output coding schemes
and different choices arrive at solutions with different prop-
erties [8]. There exist two well-studied choices for the
output coding schemes. One is

+1, if x,€ew,
Yi = . )

" -L i x,€ew,
which results in that the MSE solution approaches an optimal
mean-squared-error approximation to the Bayesian dis-

criminant function as the number of samples approaches
infinity. Another choice is

+1/I, if X, €,

=L, if X, €@,
which cause the MSE is identical to FLD except for an un-
important scale factor. If the output of MSE is continuous
values but not class labels, MSE becomes a linear regression
algorithm.

Now we generalize the classical MSE algorithm by ap-

plying some kernel functions and adding a suitable
regularization term in objective functional.

3

)

i

Assume @ is a nonlinear mapping (P : R" 5 F),
which transform the vectors in the input space into vectors in
some new feature space F'. Inthe F space, we build a
linear MSE whose weight vector and threshold are denoted
by W, and [, respectively. From the theory of re-
producing kernels we know that any solution in the feature

space must lie in the span of all training samples in the fea-
ture space [5][14]. Therefore we can construct an expan-

sion for W, inthe form,

1
M
Wo =) ' O(x,) ®)
i=1
where aq“ eRi=12,..1 are
describe significance of each sample in the weight vector.

Thus, by using the expansion (5) and the kernel function
[1-3][14]

coefficients which

K(x,,X,) = (®(x,)- ®(x,)) ©
We can define the objective function of the MSE algorithm
in the feature space F' as,

ES @y Bu) =30 ~K oy = Byw) (y-K ey - fy,u)

)
K), =k(x,,x,) ,
i, j =1,.1, is the positive semi-definite kernel matrix satisfy-

ing the Mercer condition.

A linear set of equations can be
derived from (6), i.e.,
|: KK’

Kuje, =[Ky] ®
Ku)' I |B,] vy

Note that this coefficient matrix is always singular since we
want to estimate /+1 parameters from / samples, which
will cause multiple solutions.

According to statistical learning theory, if two classifiers
have the same training error, the classifier with smallest
capacity is more likely to perform better [12]. In an effort
to choose one solution among the many solutions of (8),
additional regularization term can be added [12]. Smola
and Scholkopf [13] pointed out that the regularization term
can effectively reduce the model space and thereby control
the complexity of the solution (i.e. control capacity and
generalization). There exist two usual regularization terms:

ala, in KFD [5], and Wow, in SVM [1]{13][14],
LS-SVM [6] and ridge regression {7].

Now, we add these terms in objective function (7) and
construct different regularized objective functions, i.e.,

1
E?(GMHBM)=5M“L‘1M+E6°(‘1M,/3M) ()]

where @, = [a’lM,...,CZ,M

1
ES@,,B) =5uzwq’>w¢ +ES@,,B,) (10)

where u, and y, are positve constants or regularization
parameters and
wow, =al Ka,,

an
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Minimizing these objective functions, we obtian two new
sets of linear equations,

KK’ +u1 Kula, Ky
. = (12)
(Ku) I [ By] 0y
and
K+u,l ulfa Yy
[ u’K’z ILM}LTJ *
M

Note that we asuumed the kernel matrix is not singular in
derivation of equation (13). From the viewpoint of
numerical stability, if the constants (u; and u, ) are large

enough, the coefficient matrices in (12) and (13) become
positve definite and the problem can be made more stable
[13].

Now we obtained two linear machines in the feature space,
or two nonlinear machines with kernels in the original input
space, which are the solutions of two linear sets of equations.
We gave these two algorithms one name, i.e., KMSE, to
emphasize that they are two versions of implementation of
the same idea.

Like MSE, KMSE solutions depend on the output coding
schemes and the different choices give the solutions different
properties. In the next section, we’ll prove that KMSE is
identical to KFD when we choose (4), (8) and (12), and in

" section IV, we’ll prove the equivalence between KMSE and
LS-SVM with (3) and (13) chosen. In section V, we’ll see
that for continuous real outputs and equation (13), KMSE is
the KRR with a bias. Therefore KMSE can be viewed as a
general class of kemnel learning machines which includes
KFD, LS-SVM and KRR as its specific cases.

1m1. EQUIVALENCE BETWEEN KMSE AND KFD

For two class problem, the basic idea of FLD is to find an
orientation for which the projected samples are well sepa-
rated [8][9]). Mika et al [5] generalized the classical FLD
using kernel idea and defined the kernel Fisher discriminant
(KFD). The basic conception of this technique is that the
features in the input space are transformed into some feature
space nonlinearly and in this feature space an optimal pro-
jected direction is found by using FLD.

The objective function in KFD [5] to be maximized is,

a ‘Mo
J@p)=—"A—= 14
( F) a;NaF ( )
where
a,=(,..a ) (15)
M=M,-M, M, -M,)" (16)
[A '

(Mi)j:ll k(x;,x;), i=12j=1.1 (17

i k=]

2
N=)K,I-1)K]

J=1
KD =k(x,,X;,), j=L2n=1Em=1..1,
(19)

(18)

and I is the identity matrix, 1, is the matrix with all
J

entries as - (j=12).
lj
In the work of Mika et al [5], the solution vector @ .,
which maximizes the functional (14), is to find the leading
eigenvector of N'M . In fact, like the derivation of FLD,
we can simplify this computation and obtain,
-1
a.=N"(M,-M,) (20)
Obviously, since we estimate the / dimensional covariance

structures from [ samples, the proposed setting is ill posed
[S]. In order to cope with numerical stability problem or to
control the capacity, Mika et al simply substituted
N,=N+u0 for N, where 4 is a positive constant.

The threshold S, usually can be represented as,
Br =-af A2 )

KFD is to find an optimal linear projected direction in some
feature space. However such a projected orientation is
nonlinear in the original input space.

Now, we prove that the KMSE algorithm (8) and (12) is
equivalent to KFD when choosing the output codes as (4).

Y1 u, .
Let K=[K‘ 1(2], y=l: ], u=[ ],we can rewrite
y u,

2
equation (8) as

K K] +K,K] Ku +K,u, | a, =[Kl Kz][y",}
(Ku, +K,u,)” ! By ul uj |y,
(22)

Let the output coding scheme be equation (4), i.e.,

Yy = —l—ul Y2 = —Tl—uz , the linear set of equations (22)
2

h

becomes
K K{ +K, K7 Kju, +Kyu, {a, [ [{(M -M;)
[(K1“1+K2“2)T ) }[.BM:‘_.[ 0 j‘
(23)

From this equation set, firstly we can obtain
1 T
By = _7(11M1 +L,M,) 0, = f;
The definition of formula (18) can be described in the form,

29
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5 .
N= (KK -I,M M)

Jj=1

From (23), we obtain

Ll
%(N+—;2—2<M. ~M,)M, -M;) )a,, =M, -M,)

(25)

(26)
Since y=(M;-M,)" « u 18 a scalar, this equation can be
further simplified,

Ll _
ay =I1-—5E7)N" (M, -M) 27)
which except for an unimportant scale factor is identical to
the solution for KFD (20). Especially when we substitute

N, for N, such KFD is identical to the solution of a linear
set of equations (12).

In this section, we have proved that KMSE is equivalent
to KFD with choosing the output coding scheme (4) and ob-
jective functions (8) and (10). This means that KFD is a
special case of KMSE.

IV. EQUIVALENCE BETWEEN KMSE AND LS-SVM

The least square version of support vector machines {6] by
formulating the classification problem can be described as

. 1 I
min L(w,,b,,e)=—W, W, +y—) e (28)
b (W,,b,,e) WiV 72; k
subject to the equality constrains

yewWle(x )+ B,)=1-¢, k=1.,1 (29

Thus the optimal problem can be turned into a linear set of
equations,

-1
R ]
-y 0 ﬁL 0
where
Q=2727" 3
Z= [ylcb(xl)"":qu)(xl)lr (32)
a, = [af,...,af ]T (33)

Note that there exist some mistakes in definition of sym-
bols in paper [6]. In the least square version of support
vector machine, only a linear set of equations has to be
solved instead of the quadratic programming problem in
original SVM.

Now, we prove the equivalence between KMSE and
LS-SVM with the outputs (3) and the linear set of equations
(13).

We define a diagonal matrix,

Y =diag(y,, ¥, Y)) (34

This matrix is symmetric and always non-singular.
we rewrite

a, = b’lals’---’)"zaf]r =Yag

Again,

(35)

where @ g = [0!13 ,---,a,s }r From the linear set of equa-
tions (13), we have

(K+phe ), +uf, =y (36)
and

u' (K'a,, +up,)=u"y
By multiplying Y in (36) and applying (35), we obtain

(37

(Q+u,Dug+yB, =u (38)
where Q=YKY, YY=I, Yu=Yy and Yy=u.
Now eliminating uf3,, from (36) and (37), we obtain
-y'a;=0 (39)

From (38) and (39), a new linear set of equations is con-

structed
o PiEH
- yT 0 By 0

Comparing equation (40) with (30), we find out that the
linear set of equations (30) is equivalent to (40) when

Hy, =Y - This equivalence between KMSE and
LS-SVM indicates that LS-SVM can be viewed as a special
case of KMSE too.

(40)

V. RELATIONSHIP BETWEEN KMSE AND KRR

In [7], Saunders et al proposed one dual form of the ridge
regression, which does not involve a threshold. A linear set
of equations is built as,

(K +uDag =y @1
In linear case, if we add a dimension in sample vectors and
weight vector, the threshold or bias term can be hidden in the
weight vector thus need not be considered in derivation pro-
cedure. However in its dual form, if there is not a threshold,
the dual form cannot be degenerated into the linear one by
using the linear kernel. When adding a threshold, the dual
of ridge regression is the linear set of equations (13).
Therefore for the continuous value output, KMSE is di-
rectly the dual form of ridge regressions. Moreover the
regression function with a threshold is more comprehensive,

V1. EXPERIMENTS

Since KMSE can approach to the performance of KFD,
LS-SVM and KRR, we designed several experiments on
artificial and real-world data sets to evaluate the performance
of KMSE in the computation aspects.
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A. The Two Spiral Problem

For the two spiral problem, our task is to discriminate
between two sets of sample points which lie in two spirals in
aplane. As shown in Figs. 1 and 2, in our experiment each
category includes 108 samples. The samples of the two
classes are illustrated as “+”’s and “.”s respectively.

(b) KMSE

Fig.1 The separation hyperplane obtained with KFD (a) and KMSE (b).
The KMSE algorithm was tuned to similate KFD.

1

08
ost /.
04

02

Fig.2 The separation hyperplane obtained with LS-SVM (a) and KMSE
(b). The KMSE algorithm was tuned to simulate LS-SVM.

The performance of KMSE and KFD is illustrated in Fig.1,
where Fig.1(a) shows the separation line by KFD and Fig.1(b)
shows that of KMSE. We adopted the RBF kernel function
with 0=0.02. Both KMSE and KFD classify all
samples correctly and obtain the central and smooth
hyperplanes. Fig.2 comparies the result of KMSE (Fig.2a)
and that of LS-SVM (Fig.2b). All samples are correctly
classified too. Again two smooth and centered hyperplanes
between two category samples are found.

Therefore for the two spiral problem, we can obtain very
good decision functions by KMSE, which can approach the
results of LS-SVM and KFD.

B. An Image Segmentation Data Set

The image segmentation data sets from the DELVE re-
positories [16] include seven classes: cement, brick face,
grass, foliage, sky, path and window. Each class consists of
30 training samples and 300 test samples. Every sample is
characterized by eighteen attributes extracted from original
images.

We compared the correct rate of KFD with that of KMSE
using RBF kernel. In the numerical computation, we di-
vided the seven-class problem into six binary classification
problems. When the RBF parameter ¢ varies from 0.1 to

1.0 (with step 0.1), and L and K, are two fixed constants

respectively, at 0=025 KMSE and KFD attain the
maximum 85.86% and 87.29% respectively, and at o =0.2
the same value 85.67. The maximal difference between two
classifiers is less than 4%, which possibly results from the
fixed uand ;.

Also using RBF kernel, we compared the correct rates of
LS-SVM and KMSE. With the RBF parameter o in-
creasing from 0.1 to 2.0 (with step 0.1), and A =1/, , the

maximal distinction of correct rates between KMSE and
LS-SVM is less than 1%, which maybe result from the nu-
merical computation. At o =1.0, they reach the maxi-
mum 93.38 and 93.43 respectively. Particularly the correct
rates of two algorithms are lager than 90% when O ranges
from 0.4 to 2.0.

These experiments again proved our argument that KMSE
can be viewed as a general classifier which can fulfill KFD
and LS-SVM as its special cases.

C. The Cancer (Leukemia) Classification Problem

In [15], Golub et al introduced a generic approach to can-
cer classification based on gene expression monitoring by
DNA microarrays and used a data set included 38 training
samples and 34 test samples from two categories: acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML). Since there are 6817 genes, i.e., 6817 attributes,
50 genes are selected to design and verify their classification
approach. The result of their classifier is two samples were
rejected in the training procedure, and five samples were
rejected in the test procedure. (The decision would be error
if these samples were not rejected).

We also use the 38 samples as training set and the 34
samples as test set to evaluate the performance of KFD,
LS-SVM and KMSE. The linear kernel function is used in
this experiment. The results are listed in table 1. When
KMSE and KFD classify all samples correctly, there is only
a misclassified test sample. For LS-SVM and the corre-
sponding KMSE, there is one misclassified sample in the
training set, and two misclassified among the test samples.

Table 1. Number of rejected/misclassified samples for the
leukemia data set with different approaches

Data Set Golub’s KMSE & KMSE &
Approach KFD LS-SVM

Training Set 2 0 1

Test Set 5 1 2
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VII. CONCLUSION

In this paper, we extended the traditional MSE algorithm
to nonlinear cases with kernels, and proposed the Kernel
MSE or KMSE method. A proper regularization term is
added to the objective function besides the summation of
squared errors between the actual output of kernel neuron
and the desired output. This can make the method more
stable in the numerical computation and control its generali-
zation ability. The relationships of KMSE with KFD,
LS-SVM and KRR are discussed in detail, leading to the
conclusion that KMSE can be viewed as a unified framework
for the other methods. With these results, a better under-
standing of the kernel method family can be achieved.
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