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Application of the kernel method to the inverse geosounding problem
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Abstract

Determining the layered structure of the earth demands the solution of a variety of inverse problems; in the case of electromagnetic

soundings at low induction numbers, the problem is linear, for the measurements may be represented as a linear functional of the electrical

conductivity distribution. In this paper, an application of the support vector (SV) regression technique to the inversion of electromagnetic

data is presented. We take advantage of the regularizing properties of the SV learning algorithm and use it as a modeling technique with

synthetic and field data. The SV method presents better recovery of synthetic models than Tikhonov’s regularization. As the SV formulation

is solved in the space of the data, which has a small dimension in this application, a smaller problem than that considered with Tikhonov’s

regularization is produced. For field data, the SV formulation develops models similar to those obtained via linear programming techniques,

but with the added characteristic of robustness.
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1. Introduction

To investigate the internal structure of the earth,

geophysicists relay mostly on the interpretation of measure-

ments taken on the surface. This applies for deep soundings

of hundreds of kilometers as well as for shallow studies of

merely a few meters below the surface. The electrical

conductivity of rocks is often the property of interest in

these types of studies. For this reason, a great amount of

electrical techniques had been developed to infer the

conductivity structure of the subsurface on the basis of

surface measurements.

One of these techniques is based on electromagnetic

induction by means of an alternating current that is made to

flow in a transmitting coil. This current generates an

alternating magnetic field in the surrounding environment,

which in turn induces an electromotive force both in the

conductive ground and in a receiving coil (Grant & West,

1965). A particular version that works at low induction

numbers is of special interest from both theoretical and

practical reasons. We exploit here the peculiar theoretical

aspect of the technique. It turns out that

apparent conductivity, a normalized quantity of the surface

measurement is a linear functional of the unknown

conductivity of the subsurface (Gómez-Treviño, Esparza,

& Méndez-Delgado, 2002). The relationship is in the form

of a first order Fredholm equation

saðrÞ ¼ Fis U
ð1

0
Aðr; zÞsðzÞdz; ð1Þ

where r is the separation between the transmitting and the

receiving inductors, z depth (z ¼ 0 on the surface). Aðr; zÞ is,

for the vertical magnetic dipole case (Esparza & Gómez-

Treviño, 1987)

Aðr; zÞ ¼
4zrffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4z2 þ r2Þ3
p ; ð2Þ

and for horizontal magnetic dipoles (Gómez-Treviño et al.,

2002)

Aðr; zÞ ¼
2

r
2

4z

r
ffiffiffiffiffiffiffiffiffiffi
4z2 þ r2

p : ð3Þ

In order to obtain an estimation of the distribution of the

conductivity sðzÞ; an inversion process has to be realized.

Although the exact solution for the corresponding inverse

problems is known (Esparza & Gómez-Treviño, 1987;

Gómez-Treviño et al., 2002), the inversion process is

affected by the problem of instability because we have

responses for only a few values of r: For this reason the

inverse problem is often treated applying some kind of
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regularization (Tenorio, 2001). In the present work, the

regularization properties of the support vector (SV) method

(Smola, Schölkopf, & Müller, 1998) are considered for the

inversion process of the linear operators (2) and (3).

2. The inverse problem and SV regularization

The Tikhonov’s regularization method (Tikhonov &

Arsenin, 1977) has become the preferred technique to

obtain models of the subsurface conductivity distribution

from electromagnetic measurements (Constable, Parker, &

Constable, 1987; Hidalgo, Marroquı́n, & Gómez-Treviño,

1998). It is our interest to explore in this direction the use

of SV Methods, given the close relationship with

regularization (Girosi, 1998; Smola et al., 1998).

The statement of the problem, considering the regular-

ization approach, is as follows: the model proposed for the

conductivity distribution can be obtained minimizing the

functional

IlðsÞ ¼
1

N

XN
i¼1

gðdi 2 FisÞ þ
l

2
ksk2H: ð4Þ

In this formulation, gð·Þ represents the cost function that

measures the fitness of the model responses to each data di

of the N available. The second term correspond to the

Tikhonov’s regularization functional, a norm in the Hilbert

Space H of the functions. l is the regularization parameter,

used to control the tradeoff between fitness of model’s

responses to data and model smoothness. When gðxÞ ¼ x2;

the minimizer of Eq. (4) satisfies Fp
i Fisþ ls ¼ Fp

i di for

each i; where Fp
i is the adjoint operator of Fi:

When the space of models is considered a reproducing

kernel Hilbert space (RKHS) (Máté, 1989) with kernel

Qð·; ·Þ; and the Fi are bounded linear functionals, as in the

present case, the minimizer of Eq. (4) is of the form

(Kimeldorf & Wahba, 1971)

ŝðzÞ ¼
XN
i¼1

biRðri; zÞ: ð5Þ

where Rðri; zÞ is the representer for Fi in H; i.e. for any s;

Fis ; kRðri; ·Þ;sl: The representer can be evaluated in our

case as

Rðri; z0Þ ¼ FiQðz0; ·Þ ¼
ð1

0
Aðri; uÞQðu; z0Þdu: ð6Þ

The RKHS formulation provides for a very rich structure for

the space of models (Girosi (1998), Máté (1989), and

Vapnik (1998) for a collection of kernels and their

properties). Considering the equivalence between regular-

ization penalizers and the SV method, a Sobolev space may

be generated, as those presented in Table 1.

Also, a space of models consisting of functions with

Fourier transform of limited band on ½2w;w� may be

generated using the kernel

Rðs; tÞ ¼
sinðwðt 2 sÞÞ

wðt 2 sÞ
:

The finite and discrete version of the previous represen-

tation, consisting of trigonometric polynomials hðtÞ ¼ e2ikt;

for k ¼ 0;^1;^2;…;^n uses the Fejér kernel

Rðs; tÞ ¼
sinðn þ 1

2
ðt 2 sÞÞ

sin 1
2
ðt 2 sÞ

ðM�at�e ð1989ÞÞ:

When gðsÞ ¼ s2 we obtain the linear least squares

problem, studied by Wahba with smoothing splines

(Wahba, 1990). Our main interest is in the case of gð·Þ ¼

l·l1; Vapnik’s 1-insensitive loss function (Vapnik, 1998)

lxl1 ¼
0; lxl # 1;

lxl2 1; otherwise:

(
ð7Þ

Considering the equivalence ksk2H ¼
P

i;j bibjKij; with

Kij ¼ FiRj ¼
ð1

0
Aðu; riÞRjðuÞdu; ð8Þ

the original minimization functional is restated as follows

(Vapnik, 1998). Considering slack variables ji; jpi ; i ¼

1;…;N; the original problem is now a constrained

optimization one, with the objective of finding the

parameters bi that minimize the functional

Llðb; j; j
pÞ ¼

1

N

XN
i¼1

ðji þ jpi Þ þ
l

2

X
i;j

bibjKij ð9Þ

under the constraints

di 2
X

j

bjKij # 1þ ji;
X

j

bjKij 2 di # 1þ jpi ;

ji; j
p
i $ 0; i ¼ 1; 2;…;N:

ð10Þ

Applying the Lagrangian formulation and obtaining the dual

problem, as in Vapnik, 1998 the minimization problem (9)

becomes equivalent to maximization of the functional

Llða;a
pÞ ¼ 21

XN
i¼1

ðai þ ap
i Þ þ

XN
i¼1

diðai 2 ap
i Þ2

1

2

�
X
i;j

ðai 2 ap
i Þðaj 2 ap

j ÞKij ð11Þ

subject to ai; ap
i [ ½0; 1=lN�; with bi ¼ ai 2 ap

i ; for

i ¼ 1; 2;…;N: In formulation (4), we can include the case

Table 1

Some kernels and their representations

Kernel Norm

e2lx2yl þ e2xe2y kf k2 ¼
Ð1

0 lf 0ðxÞl2 þ lf ðxÞl2dx; even functions

e2lx2yl 2 e2xe2y kf k2 ¼
Ð1

0 lf 0ðxÞl2 þ lf ðxÞl2dx; odd functions

e2lx2yl½1 þ lx 2 yl� kf k2 ¼
Ð1

0 ðlf 00ðxÞl2 þ 2lf 0ðxÞl2 þ lf ðxÞl2Þdx
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of different functionals for the data, and the inversion

process can be realized on the vertical or horizontal

soundings alone, or in a joint version of both. In the usual

approach of regularization, a multilayered model is

considered, and the size of the minimization problem

depends on the discretization of the model, or regularization

mesh. For the case under consideration, the size of the

problem is equal to the number of data, usually small,

compared to regression problems in other areas. The

construction of the model requires, besides the definition

of the regularization mesh, the evaluation of the integrals (6)

for the representers, and for the elements of Kij in Eq. (8).

3. Application to synthetic data

In this section we attempt the recovery of models when

the data are synthetically generated from known ‘real’

models. The models considered are: s1ðzÞ ¼ 1 þ 10dð10 2

zÞ and s2ðzÞ ¼ 1 þ sinðpz=20Þ: These models were studied

for vertical dipoles in Esparza and Gómez-Treviño (1987),

obtaining the analytic inverse for them. First we will

concentrate on the representers. In Fig. 1 we show the

representers for the functionals (2) and (3), when r ¼ 10 and

a Gaussian kernel is considered

Qðz; uÞ ¼ exp
2lz 2 ul2

2g2

 !
;

with g ¼ 0:22:

It can be observed the difference in depth of penetration

for both methods: the representer for the vertical instrument

attains its greatest resolution in [1, 20] m; and the horizontal

dipole’s representer obtains its greatest perception in the

interval [0.2, 2] m:

The recovered models for the case of synthetic data

generated from the model s1ðzÞ ¼ 1 þ 10dð10 2 zÞ are

presented on Fig. 2. The data used were generated for

values of r ¼ 0:1; 1; 5; 10; 20; 40; 80; 100; and 1000m; and a

Gaussian Kernel was considered with g ¼ 0:22: The

regularization parameter considered was l ¼ 1025, and 1 ¼

1024 for vertical and horizontal cases. Increasing l smooths

the model developed, and deteriorates its form. For the joint

inversion we had to increase l to 0.005 in order to obtain

convergence. As for the fitness to data, the mean squared

error was of 0.0075 for the joint case, 0.00376 for vertical

and 0.0011 S2 for the horizontal cases. The recovered

models contain the structure of the delta, although with

some fluctuations at depths before and after the 10m:

In Fig. 2b we present a comparison with the model

developed using Tikhonov’s regularization, for the vertical

data, with l estimated using cross-validation. The models

are very similar around 10m because of the use of a

Gaussian kernel, which is equivalent to regularize penaliz-

ing all of the derivatives of the model. The model developed

with Tikhonov’s regularization deteriorates out of the

[1; 100m] interval, it is unable to use the data below 5m or

above 100m:

Fig. 3 shows the models recovered for synthetic data

obtained solving the forward equations for the model sðzÞ ¼

1 þ sinðpz=20Þ: The inductor’s separations employed were

Fig. 1. Representers of the linear functionals for the vertical and horizontal

cases, when r ¼ 10; and considering a RKHS with kernel Qðz; uÞ ¼

expðð2lz 2 ul2Þ=ð2g2ÞÞ with g ¼ 0:22.

Fig. 2. (a) Model recovered from synthetic data for a delta function at 10m; and considering a RKHS with kernel Qðz; uÞ ¼ expð2lz 2 ul2=2g2Þ; with g ¼ 0:22:

(b) Comparison of a previous model (vertical dipoles) with a model obtained using Tikhonov’s regularization.
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r ¼ 1; 10; 20; 40; 80; and 100m: The model simulates a

layered earth situation. The main interest here is on the

actual number of layers that can be recovered from the data.

From Fig. 3 we observe that due to the small amount of

data available for the inversion process, we can only recover

information below 50m:

4. Application to field data

In this section we present models developed applying the

previous procedure to field data from a local study

performed in a region of Baja California, México. The

soundings were performed at spacings of 10; 20 and 40 m.

The resulting models are shown in Fig. 4.

Basically, the same structure was observed by Gómez--

Treviño et al. (2002) with a linear programming (LP)

method that enforces a layered structure with minimum

vertical derivative norm for the logarithm of conductivity.

They recover two-layer structures for the separate vertical

and horizontal sounding data, and obtain an extra third layer

for the joint inversion. Their three-layer model is also shown

in Fig. 4. The fitness to the data is presented in Fig. 5 for our

joint inversion procedure. It can be observed that the first

vertical datum is not well approximated by the response.

The method actually incorporated a big slack variable j for

that data, considering it as an outlayer. In order to fit that

datum it would have to obtain a very complicated model, but

the smoothness penalizer does not allow for that, due to the

robust fitness function.

5. Conclusions

The regularization properties of the SV formulation were

applied to the geosounding inverse problem. The modeling

strategy allows to incorporate a priori information about the

space function where the models are supposed to belong.

The function spaces available with regularization are no

longer limited to those obtained from first or second order

derivative penalizers. The capabilities of this learning

method were evaluated on synthetic and field data,

obtaining results better or comparable with those of

Tikhonov’s or more elaborated inversion procedures.
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